Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Diagn Ther ; 28(4): 479-494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796660

RESUMO

INTRODUCTION: Hantavirus, a zoonotic pathogen, causes severe syndromes like hemorrhagic fever with renal syndrome (HFRS), sometimes fatal in humans. Considering the importance of detecting the hantavirus antigen, the construction of an immunosensor is essential. The structural and functional characteristics of camelid nanobodies (VHHs) encourage their application in the areas of nanobiotechnology, therapeutics, diagnostics, and basic research. Therefore, this study aimed to standardize stable bioconjugates using gold nanoparticles (AuNPs) and VHHs, in order to develop immunobiosensors for the diagnosis of hantavirus infection. METHODS: Immobilized metal affinity chromatography (IMAC) was performed to obtain purified recombinant anti-hantavirus nucleocapsid nanobodies (anti-prNΔ85 VHH), while AuNPs were synthesized for bioconjugation. UV-visible spectrophotometry and transmission electron microscopy (TEM) analysis were employed to characterize AuNPs. RESULTS: The bioconjugation stability parameters (VHH-AuNPs), analyzed by spectrophotometry, showed that the ideal pH value and VHH concentration were obtained at 7.4 and 50 µg/mL, respectively, after addition of 1 M NaCl, which induces AuNP aggregation. TEM performed before and after bioconjugation showed uniform, homogeneous, well-dispersed, and spherical AuNPs with an average diameter of ~ 14 ± 0.57 nm. Furthermore, high-resolution images revealed a thin white halo on the surface of the AuNPs, indicating the coating of the AuNPs with protein. A biosensor simulation test (dot blot-like [DB-like]) was performed in stationary phase to verify the binding and detection limits of the recombinant nucleocapsid protein from the Araucária hantavirus strain (prN∆85). DISCUSSION: Using AuNPs/VHH bioconjugates, a specific interaction was detected between 5 and 10 min of reaction in a dose-dependent manner. It was observed that this test was sensitive enough to detect prNΔ85 at concentrations up to 25 ng/µL. Considering that nanostructured biological systems such as antibodies conjugated with AuNPs are useful tools for the development of chemical and biological sensors, the stability of the bioconjugate indicates proficiency in detecting antigens. The experimental results obtained will be used in a future immunospot assay or lateral flow immunochromatography analysis for hantavirus detection.


Assuntos
Técnicas Biossensoriais , Ouro , Nanopartículas Metálicas , Orthohantavírus , Anticorpos de Domínio Único , Ouro/química , Nanopartículas Metálicas/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Orthohantavírus/imunologia , Humanos , Técnicas Biossensoriais/métodos , Anticorpos Antivirais/imunologia , Animais , Infecções por Hantavirus/diagnóstico
2.
Molecules ; 28(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241731

RESUMO

The number of applications for nanobodies is steadily expanding, positioning these molecules as fast-growing biologic products in the biotechnology market. Several of their applications require protein engineering, which in turn would greatly benefit from having a reliable structural model of the nanobody of interest. However, as with antibodies, the structural modeling of nanobodies is still a challenge. With the rise of artificial intelligence (AI), several methods have been developed in recent years that attempt to solve the problem of protein modeling. In this study, we have compared the performance in nanobody modeling of several state-of-the-art AI-based programs, either designed for general protein modeling, such as AlphaFold2, OmegaFold, ESMFold, and Yang-Server, or specifically designed for antibody modeling, such as IgFold, and Nanonet. While all these programs performed rather well in constructing the nanobody framework and CDRs 1 and 2, modeling CDR3 still represents a big challenge. Interestingly, tailoring an AI method for antibody modeling does not necessarily translate into better results for nanobodies.


Assuntos
Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Inteligência Artificial , Benchmarking , Biotecnologia , Engenharia de Proteínas , Anticorpos
3.
Database (Oxford) ; 20232023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37042467

RESUMO

We present NbThermo-a first-in-class database that collects melting temperatures (Tm), amino acid sequences and several other categories of useful data for hundreds of nanobodies (Nbs), compiled from an extensive literature search. This so-far unique database currently contains up-to-date, manually curated data for 564 Nbs. It represents a contribution to efforts aimed at developing new algorithms for reliable Tm prediction to assist Nb engineering for a wide range of applications of these unique biomolecules. Nbs from the two most common source organisms-llama and camel-show similar distributions of melting temperatures. A first exploratory research that takes advantage of this large data collection evidences that understanding the structural bases of Nb thermostability is a complex task, since there are no apparent differences in sequence patterns between the frameworks of Nbs with lower and higher melting temperatures, indicating that the highly variable loops play a relevant role in defining Nb thermostability. Database URL https://valdes-tresanco-ms.github.io/NbThermo.


Assuntos
Bases de Dados Factuais , Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Temperatura , Sequência de Aminoácidos , Estabilidade Proteica
4.
Mol Diagn Ther ; 25(4): 439-456, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34146333

RESUMO

The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.


Assuntos
Camelídeos Americanos/imunologia , Diagnóstico Precoce , Anticorpos de Domínio Único/imunologia , Animais , Estabilidade de Medicamentos , Humanos , Testes Imediatos , Sensibilidade e Especificidade , Anticorpos de Domínio Único/química
5.
Biomolecules ; 10(12)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317184

RESUMO

The Zika virus was introduced in Brazil in 2015 and, shortly after, spread all over the Americas. Nowadays, it remains present in more than 80 countries and represents a major threat due to some singularities among other flaviviruses. Due to its easy transmission, high percentage of silent cases, the severity of its associated complications, and the lack of prophylactic methods and effective treatments, it is essential to develop reliable and rapid diagnostic tests for early containment of the infection. Nonstructural protein 1 (NS1), a glycoprotein involved in all flavivirus infections, is secreted since the beginning of the infection into the blood stream and has proven to be a valuable biomarker for the early diagnosis of other flaviviral infections. Here, we describe the development of a highly sensitive nanobody ELISA for the detection of the NS1 protein in serum samples. Nanobodies were selected from a library generated from a llama immunized with Zika NS1 (ZVNS1) by a two-step high-throughput screening geared to identify the most sensitive and specific nanobody pairs. The assay was performed with a sub-ng/mL detection limit in the sera and showed excellent reproducibility and accuracy when validated with serum samples spiked with 0.80, 1.60, or 3.10 ng/mL of ZVNS1. Furthermore, the specificity of the developed ELISA was demonstrated using a panel of flavivirus' NS1 proteins; this is of extreme relevance in countries endemic for more than one flavivirus. Considering that the nanobody sequences are provided, the assay can be reproduced in any laboratory at low cost, which may help to strengthen the diagnostic capacity of the disease even in low-resource countries.


Assuntos
Anticorpos Antivirais/química , Ensaio de Imunoadsorção Enzimática/normas , Anticorpos de Domínio Único/química , Proteínas não Estruturais Virais/sangue , Infecção por Zika virus/diagnóstico , Zika virus/imunologia , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/isolamento & purificação , Camelídeos Americanos , Ensaio de Imunoadsorção Enzimática/métodos , Escherichia coli/genética , Humanos , Limite de Detecção , Biblioteca de Peptídeos , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/isolamento & purificação , Uruguai , Infecção por Zika virus/sangue , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
6.
J Clin Microbiol ; 58(3)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31826960

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) is the main cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening clinical complication characterized by hemolytic anemia, thrombocytopenia, and acute renal failure that mainly affects children. A relevant feature of STEC strains is the production of Stx, and all of them express Stx1 and/or Stx2 regardless of the strain serotype. Therefore, Stx detection assays are considered the most suitable methods for the early detection of STEC infections. Single-domain antibodies from camelids (VHHs) exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis. In this work, we have exploited VHH technology for the development of an immunocapture assay for Stx2 detection. Thirteen anti-Stx2 VHHs previously obtained from a variable-domain repertoire library were selected and evaluated in 130 capture-detection pair combinations for Stx detection. Based on this analysis, two VHHs were selected and a double VHH-based biotin-streptavidin capture enzyme-linked immunosorbent assay (ELISA) with spectrophotometric detection was developed and optimized for Stx2 detection. This assay showed an excellent analytical and clinical sensitivity in both STEC culture supernatants and stool samples even higher than the sensitivity of a commercial ELISA. Furthermore, based on the analysis of stool samples, the VHH-based ELISA showed high correlation with stx2 detection by PCR and a commercial rapid membrane-based immunoassay. The intrinsic properties of VHHs (high target affinity and specificity, stability, and ease of expression at high yields in recombinant bacteria) and their optimal performance for Stx detection make them attractive tools for the diagnosis of HUS related to STEC (STEC-HUS).


Assuntos
Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Síndrome Hemolítico-Urêmica/diagnóstico , Toxina Shiga I/isolamento & purificação , Toxina Shiga II/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Anticorpos de Domínio Único/química , Animais , Argentina , Pré-Escolar , Chlorocebus aethiops , Diagnóstico Precoce , Fezes/microbiologia , Humanos , Sensibilidade e Especificidade , Células Vero
7.
J Biotechnol ; 293: 17-23, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30690101

RESUMO

Vaccination is as one of the most beneficial biopharmaceutical interventions against pathogens due to its ability to induce adaptive immunity through targeted activation of the immune system. Each vaccine needs a tailor-made set of tests in order to monitor its quality throughout the development and manufacturing. The analysis of the conformational state of protein nanoparticles is one of the key steps in vaccine quality control. The enzyme lumazine synthase from Brucella spp. (BLS) acts as a potent oral and systemic immunogen. BLS has been used as a carrier of foreign peptides, protein domains and whole proteins, serving as a versatile platform for vaccine engineering purposes. Here, we show the generation and characterization of four families of nanobodies (Nbs) which only recognize BLS in its native conformational state and that bind to its active site. The present results support the use of conformation-sensitive Nbs as molecular probes during the development and production of vaccines based on the BLS platform. Finally, we propose Nbs as useful molecular tools targeting other protein scaffolds with potential applications in nano-and biotechnology.


Assuntos
Complexos Multienzimáticos , Anticorpos de Domínio Único , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Brucella/enzimologia , Escherichia coli/genética , Células HEK293 , Humanos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/fisiologia , Conformação Proteica , Dobramento de Proteína , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/fisiologia , Vacinas de Subunidades Antigênicas
8.
J Mol Recognit ; 32(1): e2755, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30033524

RESUMO

The variable VHH domains of camelid single chain antibodies have been useful in numerous biotechnology applications due to their simplicity, biophysical properties, and abilities to bind to their cognate antigens with high affinities and specificity. Their interactions with proteins have been well-studied, but considerably less work has been done to characterize their ability to bind haptens. A high-resolution structural study of three nanobodies (T4, T9, and T10) which have been shown to bind triclocarban (TCC, 3-(4-chlorophenyl)-1-(3,4-dichlorophenyl)urea) with near-nanomolar affinity shows that binding occurs in a tunnel largely formed by CDR1 rather than a surface or lateral binding mode seen in other nanobody-hapten interactions. Additional significant interactions are formed with a non-hypervariable loop, sometimes dubbed "CDR4". A comparison of apo and holo forms of T9 and T10 shows that the binding site undergoes little conformational change upon binding of TCC. Structures of three nanobody-TCC complexes demonstrated there was not a standard binding mode. T4 and T9 have a high degree of sequence identity and bind the hapten in a nearly identical manner, while the more divergent T10 binds TCC in a slightly displaced orientation with the urea moiety rotated approximately 180° along the long axis of the molecule. In addition to methotrexate, this is the second report of haptens binding in a tunnel formed by CDR1, suggesting that compounds with similar hydrophobicity and shape could be recognized by nanobodies in analogous fashion. Structure-guided mutations failed to improve binding affinity for T4 and T9 underscoring the high degree of natural optimization.


Assuntos
Carbanilidas/farmacologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Animais , Especificidade de Anticorpos , Sítios de Ligação , Camelus , Carbanilidas/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Anticorpos de Domínio Único/genética
9.
Toxins (Basel) ; 10(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494518

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) are a subset of pathogens leading to illnesses such as diarrhea, hemolytic uremic syndrome and even death. The Shiga toxins are the main virulence factors and divided in two groups: Stx1 and Stx2, of which the latter is more frequently associated with severe pathologies in humans. RESULTS: An immune library of nanobodies (Nbs) was constructed after immunizing an alpaca with recombinant Shiga toxin-2a B subunit (rStx2aB), to retrieve multiple rStx2aB-specific Nbs. The specificity of five Nbs towards rStx2aB was confirmed in ELISA and Western blot. Nb113 had the highest affinity (9.6 nM) and its bivalent construct exhibited a 100-fold higher functional affinity. The structure of the Nb113 in complex with rStx2aB was determined via X-ray crystallography. The crystal structure of the Nb113-rStx2aB complex revealed that five copies of Nb113 bind to the rStx2aB pentamer and that the Nb113 epitope overlaps with the Gb3 binding site, thereby providing a structural basis for the neutralization of Stx2a by Nb113 that was observed on Vero cells. Finally, the tandem-repeated, bivalent Nb1132 exhibits a higher toxin neutralization capacity compared to monovalent Nb113. CONCLUSIONS: The Nb of highest affinity for rStx2aB is also the best Stx2a and Stx2c toxin neutralizing Nb, especially in a bivalent format. This lead Nb neutralizes Stx2a by competing for the Gb3 receptor. The fusion of the bivalent Nb1132 with a serum albumin specific Nb is expected to combine high toxin neutralization potential with prolonged blood circulation.


Assuntos
Anticorpos Neutralizantes , Proteínas Recombinantes , Toxina Shiga II , Anticorpos de Domínio Único , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/fisiologia , Camelídeos Americanos/imunologia , Chlorocebus aethiops , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Toxina Shiga II/química , Toxina Shiga II/genética , Toxina Shiga II/imunologia , Toxina Shiga II/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/fisiologia , Células Vero
10.
MAbs ; 5(1): 80-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23221782

RESUMO

The therapeutic use of single domain antibodies (sdAbs) is a promising new approach because these small antibodies maintain antigen recognition and neutralization capacity, have thermal and chemical stability and have good solubility. In this study, using phage display technology, we isolated a variable domain of a IgNAR (vNAR) from a Heterodontus francisci shark immunized against the recombinant human cytokine TNFα (rhTNFα). One clone T43, which expresses the vNAR protein in the periplasmic space, was isolated from the fourth round of panning. T43 had the capacity to recognize rhTNF and neutralize it in vitro, indicating that T43 has potential as a therapeutic that can be used for diseases in which this pro-inflammatory cytokine needs to be controlled.


Assuntos
Anticorpos Neutralizantes/imunologia , Tubarões/imunologia , Anticorpos de Domínio Único/imunologia , Fator de Necrose Tumoral alfa/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/uso terapêutico , Especificidade de Anticorpos , Humanos , Imunização , Região Variável de Imunoglobulina/biossíntese , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Imunoglobulinas/biossíntese , Imunoglobulinas/química , Imunoglobulinas/imunologia , Masculino , Camundongos , Dados de Sequência Molecular , Testes de Neutralização , Biblioteca de Peptídeos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Choque Séptico/imunologia , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/uso terapêutico , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA