Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomic Med ; 7(9): e931, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31397093

RESUMO

BACKGROUND: Male EBP disorder with neurologic defects (MEND) syndrome is an X-linked disease caused by hypomorphic mutations in the EBP (emopamil-binding protein) gene. Modifier genes may explain the clinical variability among individuals who share a primary mutation. METHODS: We studied four males (Patient 1 to Patient 4) exhibiting a descending degree of phenotypic severity from a family with MEND syndrome. To identify candidate modifier genes that explain the phenotypic variability, variants of homeostasis cholesterol genes identified by whole-exome sequencing (WES) were ranked according to the predicted magnitude of their effect through an in-house scoring system. RESULTS: Twenty-seven from 105 missense variants found in 45 genes of the four exomes were considered significant (-5 to -9 scores). We found a direct genotype-phenotype association based on the differential accumulation of potentially functional gene variants among males. Patient 1 exhibited 17 variants, both Patients 2 and 3 exhibited nine variants, and Patient 4 exhibited only five variants. CONCLUSION: We conclude that APOA5 (rs3135506), ABCA1 (rs9282541), and APOB (rs679899 and rs12714225) are the most relevant candidate modifier genes in this family. Relative accumulation of the deficiencies associated with variants of these genes along with other lesser deficiencies in other genes appears to explain the variable expressivity in MEND syndrome.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Apolipoproteína A-V , Apolipoproteína B-100 , Colesterol , Exoma , Polimorfismo Genético , Síndrome de Waardenburg , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-V/genética , Apolipoproteína A-V/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Colesterol/genética , Colesterol/metabolismo , Feminino , Estudos de Associação Genética , Homeostase/genética , Humanos , Masculino , Fenótipo , Índice de Gravidade de Doença , Síndrome de Waardenburg/genética , Síndrome de Waardenburg/metabolismo , Síndrome de Waardenburg/patologia
2.
J Ethnopharmacol ; 210: 69-79, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28844679

RESUMO

ETNOPHARMACOLOGICAL RELEVANCE: Syzygium cumini (L.) Skeels is a plant widely used in folk medicine to treat diabetes mellitus (DM). The tea from its leaves is frequently used by diabetics for lowering hyperglycemia. There is a close relationship between DM and atherosclerosis, a chronic immuno-inflammatory disease, were the early stages encompass oxidative and glycative modifications in the structure of low density lipoprotein (LDL). AIM OF THIS STUDY: To investigate the potential protective effects of aqueous-leaf extract from Syzygium cumini (S.cExt) against CuSO4-induced oxidation and methylglyoxal (MG)-induced glycation of human LDL in vitro. MATERIALS AND METHODS: LDL oxidative changes were evaluated by measuring conjugated dienes (CD) formation, thiobarbituric acid reactive substances (TBARS) levels, quenching of tryptophan (Trp) fluorescence and structural modifications in LDL particle. In LDL glycated by MG (glyLDL), we determined the levels of fluorescent advanced glycation end products (AGEs) and mobility by agarose gel electrophoresis. RESULTS: S.cExt blocked oxidative events induced by CuSO4 in human LDL, plasma and serum. Fourier transform infrared spectroscopy (FT-IR) revealed that specific regions of apoB100 were oxidized by CuSO4 in human LDL and that S.cExt reduced these oxidations. Unlike, the increased AGEs levels and eletrophoretic mobility observed in LDL MG-glycated were not modified by S.cExt. CONCLUSION: The findings herein indicate that S.cExt could be tested in atherogenesis models as potential protective agent against LDL oxidation.


Assuntos
Lipoproteínas LDL/metabolismo , Extratos Vegetais/farmacologia , Syzygium/química , Apolipoproteína B-100/metabolismo , Sulfato de Cobre/administração & dosagem , Eletroforese em Gel de Ágar , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Medicina Tradicional , Oxirredução , Folhas de Planta , Espectroscopia de Infravermelho com Transformada de Fourier , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
3.
Mol Biotechnol ; 59(11-12): 482-489, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28965203

RESUMO

Atherosclerosis is a pathology leading to cardiovascular diseases with high epidemiologic impact; thus, new therapies are required to fight this global health issue. Immunotherapy is a feasible approach to treat atherosclerosis and given that genetically engineered plants are attractive hosts for vaccine development; we previously proved that the plant cell is able to synthesize a chimeric protein called CTB:p210:CETPe, which is composed of the cholera toxin B subunit (CTB) as immunogenic carrier and target epitopes from the cholesteryl ester transfer protein (CETP461-476) and apolipoprotein B100 (p210). Since CTB:p210:CETPe was expressed in tobacco at sufficient levels to evoke humoral responses in mice, its expression in carrot was explored in the present study looking to develop a vaccine in a safe host amenable for oral delivery; avoiding the purification requirement. Carrot cell lines expressing CTB:p210:CETPe were developed, showing accumulation levels up to 6.1 µg/g dry weight. An immunoblot analysis revealed that the carrot-made protein is antigenic and an oral mice immunization scheme led to evidence on the immunogenic activity of this protein; revealing its capability of inducing serum IgG responses against p210 and CETP epitopes. This study represents a step forward in the development of an attractive oral low-cost vaccine to treat atherosclerosis.


Assuntos
Aterosclerose/imunologia , Vacinas/imunologia , Administração Oral , Animais , Apolipoproteína B-100/metabolismo , Aterosclerose/prevenção & controle , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Daucus carota/genética , Daucus carota/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacinação , Vacinas/administração & dosagem
4.
Expert Rev Gastroenterol Hepatol ; 5(2): 245-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21476919

RESUMO

Nonalcoholic fatty liver disease is currently one of the most common forms of liver disease, covering cases from simple steatosis without inflammation, to cases of steatohepatitis and fibrosis, and may lead to liver cirrhosis and hepatocellular carcinoma. The pathophysiology of nonalcoholic fatty liver disease is based on multiple events; changes in the secretion of lipoproteins can lead to steatosis. Liver lipid secretion is mediated by apoB100 and microsomal triglyceride transfer protein (MTP). The pharmacological suppression of MTP is suggested as a possible treatment for hyperlipidemia, although the upregulation of this protein can be a treatment for nonalcoholic steatohepatitis.


Assuntos
Proteínas de Transporte/metabolismo , Animais , Apolipoproteína B-100/metabolismo , Proteínas de Transporte/genética , Ácidos Graxos/biossíntese , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Insulina/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Cirrose Hepática/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica , Polimorfismo Genético , Transdução de Sinais
5.
Atherosclerosis ; 215(2): 257-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21292266

RESUMO

Oxidative modifications in lipoproteins (LP), especially in low-density lipoproteins (LDL), are associated with initiation and progression of atherosclerosis. The levels of a sub-fraction of LDL with oxidative characteristics, named electronegative LDL [LDL(-)], minimally oxidized LDL, and minus LDL, are known to be increased in subjects with familial hypercholesterolemia, hypertriglyceridemia, nonalcoholic steatohepatitis, diabetes mellitus, coronary artery disease, patients undergoing hemodialysis, and athletes after aerobic exercise. In addition to the oxidative profile, physical and biological characteristics of LDL(-) consist of nonenzymatic glycosylation, increased expression and activity of platelet-activating factor acetylhydrolase (PAF-AH) and phospholipase A(2) (PLA(2)), enriched NEFA content, hemoglobin and ApoB-100 cross-linking, and increase in ApoC-III and ApoE in LDL. Herein, we summarize the state of the art of the up-to-date body of knowledge on the possible origin and impact of LDL(-) in health and disease. Further, the potential perspectives of using LDL(-) as a biomarker in conditions under metabolic stress are also discussed.


Assuntos
Lipoproteínas LDL/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Apolipoproteína B-100/metabolismo , Apolipoproteína C-III/metabolismo , Apolipoproteínas E/metabolismo , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/imunologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA