Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Crit Care Med ; 49(8): 1312-1321, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711001

RESUMO

OBJECTIVES: The National Early Warning Score, Modified Early Warning Score, and quick Sepsis-related Organ Failure Assessment can predict clinical deterioration. These scores exhibit only moderate performance and are often evaluated using aggregated measures over time. A simulated prospective validation strategy that assesses multiple predictions per patient-day would provide the best pragmatic evaluation. We developed a deep recurrent neural network deterioration model and conducted a simulated prospective evaluation. DESIGN: Retrospective cohort study. SETTING: Four hospitals in Pennsylvania. PATIENTS: Inpatient adults discharged between July 1, 2017, and June 30, 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We trained a deep recurrent neural network and logistic regression model using data from electronic health records to predict hourly the 24-hour composite outcome of transfer to ICU or death. We analyzed 146,446 hospitalizations with 16.75 million patient-hours. The hourly event rate was 1.6% (12,842 transfers or deaths, corresponding to 260,295 patient-hours within the predictive horizon). On a hold-out dataset, the deep recurrent neural network achieved an area under the precision-recall curve of 0.042 (95% CI, 0.04-0.043), comparable with logistic regression model (0.043; 95% CI 0.041 to 0.045), and outperformed National Early Warning Score (0.034; 95% CI, 0.032-0.035), Modified Early Warning Score (0.028; 95% CI, 0.027- 0.03), and quick Sepsis-related Organ Failure Assessment (0.021; 95% CI, 0.021-0.022). For a fixed sensitivity of 50%, the deep recurrent neural network achieved a positive predictive value of 3.4% (95% CI, 3.4-3.5) and outperformed logistic regression model (3.1%; 95% CI 3.1-3.2), National Early Warning Score (2.0%; 95% CI, 2.0-2.0), Modified Early Warning Score (1.5%; 95% CI, 1.5-1.5), and quick Sepsis-related Organ Failure Assessment (1.5%; 95% CI, 1.5-1.5). CONCLUSIONS: Commonly used early warning scores for clinical decompensation, along with a logistic regression model and a deep recurrent neural network model, show very poor performance characteristics when assessed using a simulated prospective validation. None of these models may be suitable for real-time deployment.


Assuntos
Deterioração Clínica , Cuidados Críticos/normas , Aprendizado Profundo/normas , Escores de Disfunção Orgânica , Sepse/terapia , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Pennsylvania , Estudos Retrospectivos , Medição de Risco
2.
Circulation ; 143(13): 1287-1298, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33588584

RESUMO

BACKGROUND: Atrial fibrillation (AF) is associated with substantial morbidity, especially when it goes undetected. If new-onset AF could be predicted, targeted screening could be used to find it early. We hypothesized that a deep neural network could predict new-onset AF from the resting 12-lead ECG and that this prediction may help identify those at risk of AF-related stroke. METHODS: We used 1.6 M resting 12-lead digital ECG traces from 430 000 patients collected from 1984 to 2019. Deep neural networks were trained to predict new-onset AF (within 1 year) in patients without a history of AF. Performance was evaluated using areas under the receiver operating characteristic curve and precision-recall curve. We performed an incidence-free survival analysis for a period of 30 years following the ECG stratified by model predictions. To simulate real-world deployment, we trained a separate model using all ECGs before 2010 and evaluated model performance on a test set of ECGs from 2010 through 2014 that were linked to our stroke registry. We identified the patients at risk for AF-related stroke among those predicted to be high risk for AF by the model at different prediction thresholds. RESULTS: The area under the receiver operating characteristic curve and area under the precision-recall curve were 0.85 and 0.22, respectively, for predicting new-onset AF within 1 year of an ECG. The hazard ratio for the predicted high- versus low-risk groups over a 30-year span was 7.2 (95% CI, 6.9-7.6). In a simulated deployment scenario, the model predicted new-onset AF at 1 year with a sensitivity of 69% and specificity of 81%. The number needed to screen to find 1 new case of AF was 9. This model predicted patients at high risk for new-onset AF in 62% of all patients who experienced an AF-related stroke within 3 years of the index ECG. CONCLUSIONS: Deep learning can predict new-onset AF from the 12-lead ECG in patients with no previous history of AF. This prediction may help identify patients at risk for AF-related strokes.


Assuntos
Fibrilação Atrial/diagnóstico , Aprendizado Profundo/normas , Acidente Vascular Cerebral/etiologia , Fibrilação Atrial/complicações , Eletrocardiografia , Feminino , Humanos , Masculino , Redes Neurais de Computação , Acidente Vascular Cerebral/mortalidade , Análise de Sobrevida
3.
Proc Natl Acad Sci U S A ; 117(23): 12592-12594, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457147

RESUMO

Artificial intelligence (AI) systems for computer-aided diagnosis and image-based screening are being adopted worldwide by medical institutions. In such a context, generating fair and unbiased classifiers becomes of paramount importance. The research community of medical image computing is making great efforts in developing more accurate algorithms to assist medical doctors in the difficult task of disease diagnosis. However, little attention is paid to the way databases are collected and how this may influence the performance of AI systems. Our study sheds light on the importance of gender balance in medical imaging datasets used to train AI systems for computer-assisted diagnosis. We provide empirical evidence supported by a large-scale study, based on three deep neural network architectures and two well-known publicly available X-ray image datasets used to diagnose various thoracic diseases under different gender imbalance conditions. We found a consistent decrease in performance for underrepresented genders when a minimum balance is not fulfilled. This raises the alarm for national agencies in charge of regulating and approving computer-assisted diagnosis systems, which should include explicit gender balance and diversity recommendations. We also establish an open problem for the academic medical image computing community which needs to be addressed by novel algorithms endowed with robustness to gender imbalance.


Assuntos
Conjuntos de Dados como Assunto/normas , Aprendizado Profundo/normas , Interpretação de Imagem Radiográfica Assistida por Computador/normas , Radiografia Torácica/normas , Viés , Feminino , Humanos , Masculino , Padrões de Referência , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA