Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
Respir Res ; 25(1): 264, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965590

RESUMO

BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.


Assuntos
Broncoscopia , Impedância Elétrica , Animais , Suínos , Broncoscopia/métodos , Pneumonectomia/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Pulmão/cirurgia , Pulmão/fisiologia , Tomografia/métodos , Atelectasia Pulmonar/diagnóstico por imagem , Atelectasia Pulmonar/fisiopatologia , Medidas de Volume Pulmonar/métodos , Fatores de Tempo
2.
Braz J Cardiovasc Surg ; 39(3): e20220424, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629954

RESUMO

OBJECTIVE: To investigate the effect of improving the operative field and postoperative atelectasis of single-lung ventilation (SLV) in the surgical repair of coarctation of the aorta (CoA) in infants without the use of cardiopulmonary bypass (CPB). METHODS: This was a retrospective cohort study. The clinical data of 28 infants (aged 1 to 4 months, weighing between 4.2 and 6 kg) who underwent surgical repair of CoA without CPB from January 2019 to May 2022 were analyzed. Fourteen infants received SLV with a bronchial blocker (Group S), and the other 14 infants received routine endotracheal intubation and bilateral lung ventilation (Group R). RESULTS: In comparison to Group R, Group S exhibited improved exposure of the operative field, a lower postoperative atelectasis score (P<0.001), reduced prevalence of hypoxemia (P=0.01), and shorter durations of operation, mechanical ventilation, and ICU stay (P=0.01, P<0.001, P=0.03). There was no difference in preoperative information or perioperative respiratory and circulatory indicators before SLV, 10 minutes after SLV, and 10 minutes after the end of SLV between the two groups (P>0.05). Intraoperative bleeding, intraoperative positive end-expiratory pressure (PEEP), and systolic pressure gradient across the coarctation after operation were also not different between the two groups (P>0.05). CONCLUSION: This study demonstrates that employing SLV with a bronchial blocker is consistent with enhanced operative field, reduced operation duration, lower prevalence of intraoperative hypoxemia, and fewer postoperative complications during the surgical repair of CoA in infants without the use of CPB.


Assuntos
Coartação Aórtica , Ventilação Monopulmonar , Atelectasia Pulmonar , Lactente , Humanos , Ponte Cardiopulmonar , Coartação Aórtica/cirurgia , Estudos Retrospectivos , Complicações Pós-Operatórias , Hipóxia , Atelectasia Pulmonar/etiologia , Atelectasia Pulmonar/prevenção & controle
4.
Anesthesiology ; 140(4): 752-764, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207290

RESUMO

BACKGROUND: Lower fractional inspired oxygen tension (Fio2) during general anesthesia can reduce lung atelectasis. The objectives are to evaluate the effect of two Fio2 (0.4 and 1) during low positive end-expiratory pressure (PEEP) ventilation over lung perfusion distribution, volume, and regional ventilation. These variables were evaluated at two PEEP levels and unilateral lung atelectasis. METHODS: In this exploratory study, 10 healthy female piglets (32.3 ± 3.4 kg) underwent mechanical ventilation in two atelectasis models: (1) bilateral gravitational atelectasis (n = 6), induced by changes in PEEP and Fio2 in three combinations: high PEEP with low Fio2 (Fio2 = 0.4), zero PEEP (PEEP0) with low Fio2 (Fio2 = 0.4), and PEEP0 with high Fio2 (Fio2 = 1); and (2) unilateral atelectasis (n = 6), induced by left bronchial occlusion, with the left lung aerated (Fio2 = 0.21) and low aerated (Fio2 = 1; n = 5 for this step). Measurements were conducted after 10 min in each step, encompassing assessment of respiratory mechanics, oxygenation, and hemodynamics; lung ventilation and perfusion by electrical impedance tomography; and lung aeration and perfusion by computed tomography. RESULTS: During bilateral gravitational atelectasis, PEEP reduction increased atelectasis in dorsal regions, decreased respiratory compliance, and distributed lung ventilation to ventral regions with a parallel shift of perfusion to the same areas. With PEEP0, there were no differences between low and high Fio2 in respiratory compliance (23.9 ± 6.5 ml/cm H2O vs. 21.9 ± 5.0; P = 0.441), regional ventilation, and regional perfusion, despite higher lung collapse (18.6 ± 7.6% vs. 32.7 ± 14.5%; P = 0.045) with high Fio2. During unilateral lung atelectasis, the deaerated lung had a lower shunt (19.3 ± 3.6% vs. 25.3 ± 5.5%; P = 0.045) and lower computed tomography perfusion to the left lung (8.8 ± 1.8% vs. 23.8 ± 7.1%; P = 0.007). CONCLUSIONS: PEEP0 with low Fio2, compared with high Fio2, did not produce significant changes in respiratory system compliance, regional lung ventilation, and perfusion despite significantly lower lung collapse. After left bronchial occlusion, the shrinkage of the parenchyma with Fio2 = 1 enhanced hypoxic pulmonary vasoconstriction, reducing intrapulmonary shunt and perfusion of the nonventilated areas.


Assuntos
Atelectasia Pulmonar , Respiração Artificial , Animais , Feminino , Suínos , Respiração Artificial/métodos , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar , Atelectasia Pulmonar/diagnóstico por imagem , Atelectasia Pulmonar/terapia , Perfusão , Oxigênio
5.
Anesthesiology ; 140(3): 430-441, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064715

RESUMO

BACKGROUND: Exaggerated lung strain and stress could damage lungs in anesthetized children. The authors hypothesized that the association of capnoperitoneum and lung collapse in anesthetized children increases lung strain-stress. Their primary aim was to describe the impact of capnoperitoneum on lung strain-stress and the effects of an individualized protective ventilation during laparoscopic surgery in children. METHODS: The authors performed an observational cohort study in healthy children aged 3 to 7 yr scheduled for laparoscopic surgery in a community hospital. All received standard protective ventilation with 5 cm H2O of positive end-expiratory pressure (PEEP). Children were evaluated before capnoperitoneum, during capnoperitoneum before and after lung recruitment and optimized PEEP (PEEP adjusted to get end-expiratory transpulmonary pressure of 0), and after capnoperitoneum with optimized PEEP. The presence of lung collapse was evaluated by lung ultrasound, positive Air-Test (oxygen saturation measured by pulse oximetry 96% or less breathing 21% O2 for 5 min), and negative end-expiratory transpulmonary pressure. Lung strain was calculated as tidal volume/end-expiratory lung volume measured by capnodynamics, and lung stress as the end-inspiratory transpulmonary pressure. RESULTS: The authors studied 20 children. Before capnoperitoneum, mean lung strain was 0.20 ± 0.07 (95% CI, 0.17 to 0.23), and stress was 5.68 ± 2.83 (95% CI, 4.44 to 6.92) cm H2O. During capnoperitoneum, 18 patients presented lung collapse and strain (0.29 ± 0.13; 95% CI, 0.23 to 0.35; P < 0.001) and stress (5.92 ± 3.18; 95% CI, 4.53 to 7.31 cm H2O; P = 0.374) increased compared to before capnoperitoneum. During capnoperitoneum and optimized PEEP, children presenting lung collapse were recruited and optimized PEEP was 8.3 ± 2.2 (95% CI, 7.3 to 9.3) cm H2O. Strain returned to values before capnoperitoneum (0.20 ± 0.07; 95% CI, 0.17 to 0.22; P = 0.318), but lung stress increased (7.29 ± 2.67; 95% CI, 6.12 to 8.46 cm H2O; P = 0.020). After capnoperitoneum, strain decreased (0.18 ± 0.04; 95% CI, 0.16 to 0.20; P = 0.090), but stress remained higher (7.25 ± 3.01; 95% CI, 5.92 to 8.57 cm H2O; P = 0.024) compared to before capnoperitoneum. CONCLUSIONS: Capnoperitoneum increased lung strain in healthy children undergoing laparoscopy. Lung recruitment and optimized PEEP during capnoperitoneum decreased lung strain but slightly increased lung stress. This little rise in pulmonary stress was maintained within safe, lung-protective, and clinically acceptable limits.


Assuntos
Laparoscopia , Atelectasia Pulmonar , Criança , Humanos , Pulmão , Respiração Artificial , Estudos de Coortes
6.
PLoS One ; 18(12): e0295775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38079432

RESUMO

Pulmonary expansion manoeuvres are therapeutic techniques used to prevent and reverse atelectasis; however, no randomized controlled trials have provided evidence supporting the use of this intervention among individuals on mechanical ventilation. OBJECTIVE: To evaluate the effects of chest compression-decompression and chest block manoeuvres compared to usual care among patients on mechanical ventilation. METHODS: The current study was a randomized clinical trial of adult subjects on mechanical ventilation for 12 to 48 hours. The control group received usual care (passive or active mobilization, manoeuvres for airway clearance and tracheal aspiration). The intervention group received usual care plus two lung expansion manoeuvres, i.e., chest decompression and chest block, while remaining on mechanical ventilation. Assessments were performed before and after usual care, immediately after the intervention and 30 minutes after the intervention. The primary outcome was static compliance. The secondary outcomes were the incidence of atelectasis, dynamic compliance, airway resistance, driving pressure, oxygenation, duration of mechanical ventilation, extubation success, length of hospital and ICU stay, and mortality. RESULTS: Fifty-one participants (67±15 years old, 53% men, 26 in the control group and 25 in the intervention group) were evaluated. No differences in static compliance were observed between groups (intervention minus control) before and after expansion manoeuvres [3.64 ml/cmH2O (95% CI: -0.36-7.65, p = 0.074)]. Peripheral oxygen saturation differed between groups before and after expansion manoeuvres, with more favourable outcome observed in the control group [-1.04% (95% CI: -1.94 --0.14), p = 0.027]. No differences were found in other outcomes. CONCLUSION: Chest compression-decompression and chest block manoeuvres did not improve ventilatory mechanics, the incidence of atelectasis, oxygenation, the duration of mechanical ventilation, the length of stay in the ICU and hospital, or mortality in individuals on mechanical ventilation. The findings of this study can be valuable for guiding evidence-based clinical practice and developing a therapeutic approach that provides real benefits for this population.


Assuntos
Atelectasia Pulmonar , Respiração Artificial , Adulto , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Respiração Artificial/métodos , Tempo de Internação , Extubação/métodos , Pulmão , Atelectasia Pulmonar/prevenção & controle
7.
Respirar (Ciudad Autón. B. Aires) ; 15(3): [176-181], sept. 2023.
Artigo em Espanhol | LILACS, UNISALUD, BINACIS | ID: biblio-1510620

RESUMO

Introducción: es bien sabido que el neumoperitoneo en cirugía laparoscópica afecta tanto al sistema cardiovascular como al sistema respiratorio, pero no se entiende por completo el grado en el que debemos modificar los parámetros ventilatorios para mini-mizar las complicaciones debido a la insuflación del neumoperitoneo. Estos cambios in-cluyen disminución de la distensibilidad y mayores presiones inspiratorias pico.


Abstract Background: it is well known that pneumoperitoneum in laparoscopic surgery affects both cardiovascular and respiratory system, but it is not fully understood yet the degree in which we have to make changes in the ventilatory settings to minimize the complica-tions due to insufflation of peritoneum, changes including impaired compliance and hig-her peak inspiratory.


Assuntos
Humanos , Masculino , Feminino , Adolescente , Adulto , Pessoa de Meia-Idade , Pneumoperitônio/cirurgia , Atelectasia Pulmonar/complicações , Ventilação Pulmonar , Pressões Respiratórias Máximas , Anestesia
8.
J Appl Physiol (1985) ; 135(2): 239-250, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289955

RESUMO

Lung perfusion magnitude and distribution are essential for oxygenation and, potentially, lung inflammation and protection during acute respiratory distress syndrome (ARDS). Yet, perfusion patterns and their relationship to inflammation are unknown pre-ARDS. We aimed to assess perfusion/density ratios and spatial perfusion-density distributions and associate these to lung inflammation, during early lung injury in large animals at different physiological conditions caused by different systemic inflammation and positive end-expiratory pressure (PEEP) levels. Sheep were protectively ventilated (16-24 h) and imaged for lung density, pulmonary capillary perfusion (13Nitrogen-saline), and inflammation (18F-fluorodeoxyglucose) using positron emission and computed tomography. We studied four conditions: permissive atelectasis (PEEP = 0 cmH2O); and ARDSNet low-stretch PEEP-setting strategy with supine moderate or mild endotoxemia, and prone mild endotoxemia. Perfusion/density heterogeneity increased pre-ARDS in all groups. Perfusion redistribution to density depended on ventilation strategy and endotoxemia level, producing more atelectasis in mild than moderate endotoxemia (P = 0.010) with the oxygenation-based PEEP-setting strategy. The spatial distribution of 18F-fluorodeoxyglucose uptake was related to local Q/D (P < 0.001 for Q/D group interaction). Moderate endotoxemia yielded markedly low/zero perfusion in normal-low density lung, with 13Nitrogen-saline perfusion indicating nondependent capillary obliteration. Prone animals' perfusion was remarkably homogeneously distributed with density. Lung perfusion redistributes heterogeneously to density during pre-ARDS protective ventilation in animals. This is associated with increased inflammation, nondependent capillary obliteration, and lung derecruitment susceptibility depending on endotoxemia level and ventilation strategy.NEW & NOTEWORTHY Perfusion redistribution does not follow lung density redistribution in the first 16-24 h of systemic endotoxemia and protective tidal volume mechanical ventilation. The same oxygenation-based positive end-expiratory pressure (PEEP)-setting strategy can lead at different endotoxemia levels to different perfusion redistributions, PEEP values, and lung aerations, worsening lung biomechanical conditions. During early acute lung injury, regional perfusion-to-tissue density ratio is associated with increased neutrophilic inflammation, and susceptibility to nondependent capillary occlusion and lung derecruitment, potentially marking and/or driving lung injury.


Assuntos
Lesão Pulmonar Aguda , Endotoxemia , Pneumonia , Atelectasia Pulmonar , Síndrome do Desconforto Respiratório , Animais , Ovinos , Fluordesoxiglucose F18 , Pulmão/irrigação sanguínea , Inflamação , Perfusão , Nitrogênio
10.
J Med Primatol ; 52(4): 279-282, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37114715

RESUMO

Chylothorax is the accumulation of lymph in the thoracic cavity, and it has never been reported in neotropical primates. An emperor tamarin died and at necropsy chylothorax associated with pulmonary compressive atelectasis was diagnosed. Idiopathic chylothorax can be a cause of respiratory insufficiency and death in tamarins.


Assuntos
Quilotórax , Atelectasia Pulmonar , Animais , Quilotórax/diagnóstico , Quilotórax/etiologia , Quilotórax/veterinária , Saguinus , Pulmão , Atelectasia Pulmonar/etiologia , Atelectasia Pulmonar/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA