Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 87(13): 533-540, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38660981

RESUMO

Seed conditioning with ultraviolet light (UV-C) might (1) improve crop yield and quality, (2) reduce the use of agrochemicals during cultivation, and (3) increase plant survival in high salinity environments. The aim of this study was to examine the effects of UV-C conditioning of white oat seeds at two doses (0.85 and 3.42 kJ m-2) under salinity stress (100 mM NaCl). Seeds were sown on germination paper and kept in a germination chamber at 20°C. Germination and seedling growth parameters were evaluated after 5 and 10 days. Data demonstrated that excess salt reduced germination and initial growth of white oat seedlings. In all the variables analyzed, exposure of seeds to UV-C under salt stress exerted a positive effect compared to non-irradiated control. The attenuating influence of UV-C in germination was greater at 0.85 than at 3.42 kJ m-2. Thus, data indicate that conditioning white oat seeds in UV-C light produced greater tolerance to salt stress. These findings suggest that UV-C conditioning of white oat seeds may be considered as a simple and economical strategy to alleviate salt-induced stress.


Assuntos
Avena , Germinação , Sementes , Raios Ultravioleta , Avena/efeitos dos fármacos , Avena/efeitos da radiação , Avena/crescimento & desenvolvimento , Sementes/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Estresse Salino/efeitos dos fármacos , Plântula/efeitos da radiação , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Cloreto de Sódio
2.
Genet Mol Res ; 13(4): 10332-40, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25501245

RESUMO

The black oat (Avena strigosa Schreb) is commonly used for forage, soil cover, and green manure. Despite its importance, little improvement has been made to this species, leading to high levels of genotypic disuniformity within commercial cultivars. The objective of this study was to evaluate the efficiency of different doses of gamma rays [(60)Co] applied to black oat seeds on the increase of genetic variability of agronomic traits. We applied doses of 0, 10, 50, 100, and 200 Gy to the genotype ALPHA 94087 through exposure to [(60)Co]. Two experiments were conducted in the winter of 2008. The first aimed to test forage trait measurements such as plant height, dry matter yield, number of surviving tillers, and seedling stand. The second test assessed seed traits, such as yield and dormancy levels. Gamma irradiation seems not to increase seed yield in black oats, but it was effective in generating variability for the other traits. Tiller number and plant height are important selection traits to increase dry matter yield. Selection in advanced generations of mutant populations can increase the probability of identifying superior genotypes.


Assuntos
Avena/genética , Variação Genética/efeitos da radiação , Sementes/genética , Avena/efeitos da radiação , Raios gama , Fenótipo , Dormência de Plantas/efeitos da radiação , Locos de Características Quantitativas/genética , Plântula/efeitos da radiação , Sementes/efeitos da radiação
3.
Photochem Photobiol ; 80(2): 224-30, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15362944

RESUMO

Field experiments assessing UV-B effects on plants have been conducted using two contrasting techniques: supplementation of solar UV-B with radiation from fluorescent UV lamps and the exclusion of solar UV-B with filters. We compared these two approaches by growing lettuce and oat simultaneously under three conditions: UV-B exclusion, near-ambient UV-B (control) and UV-B supplementation (simulating a 30% ozone depletion). This permitted computation of "solar UV-B" and "supplemental UV-B" effects. Microclimate and photosynthetically active radiation were the same under the two treatments and the control. Excluding UV-B changed total UV-B radiation more than did supplementing UV-B, but the UV-B supplementation contained more "biologically effective" shortwave radiation. For oat, solar UV-B had a greater effect than supplemental UV-B on main shoot leaf area and main shoot mass, but supplemental UV-B had a greater effect on leaf and tiller number and UV-B-absorbing compounds. For lettuce, growth and stomatal density generally responded similarly to both solar UV-B and supplemented UV-B radiation, but UV-absorbing compounds responded more to supplemental UV-B, as in oat. Because of the marked spectral differences between the techniques, experiments using UV-B exclusion are most suited to assessing effects of present-day UV-B radiation, whereas UV-B supplementation experiments are most appropriate for addressing the ozone depletion issue.


Assuntos
Avena/efeitos da radiação , Lactuca/efeitos da radiação , Ozônio/análise , Raios Ultravioleta , Atmosfera/química , Avena/crescimento & desenvolvimento , Lactuca/crescimento & desenvolvimento
4.
Plant Physiol ; 129(3): 1127-37, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12114567

RESUMO

Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluence response (VLFR), which can be saturated by short pulses of very-low-fluence light, and the high-irradiance response (HIR), which requires prolonged irradiation with higher fluences of far-red light (FR). To investigate whether the VLFR and HIR involve different domains within the phyA molecule, transgenic tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis seedlings expressing full-length (FL) and various deletion mutants of oat (Avena sativa) phyA were examined for their light sensitivity. Although most mutants were either partially active or inactive, a strong differential effect was observed for the Delta6-12 phyA mutant missing the serine-rich domain between amino acids 6 and 12. Delta6-12 phyA was as active as FL phyA for the VLFR of hypocotyl growth and cotyledon unfolding in Arabidopsis, and was hyperactive in the VLFR of hypocotyl growth and cotyledon unfolding in tobacco, and the VLFR blocking subsequent greening under white light in Arabidopsis. In contrast, Delta6-12 phyA showed a dominant-negative suppression of HIR in both species. In hypocotyl cells of Arabidopsis irradiated with FR phyA:green fluorescent protein (GFP) and Delta6-12 phyA:GFP fusions localized to the nucleus and coalesced into foci. The proportion of nuclei with abundant foci was enhanced by continuous compared with hourly FR provided at equal total fluence in FL phyA:GFP, and by Delta6-12 phyA mutation under hourly FR. We propose that the N-terminal serine-rich domain of phyA is involved in channeling downstream signaling via the VLFR or HIR pathways in different cellular contexts.


Assuntos
Avena/fisiologia , Núcleo Celular/metabolismo , Fitocromo/metabolismo , Serina/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis , Avena/genética , Avena/efeitos da radiação , Proteínas de Fluorescência Verde , Hipocótilo/crescimento & desenvolvimento , Luz , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Fitocromo/química , Fitocromo/genética , Fitocromo A , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/genética , Sementes/fisiologia , Sementes/efeitos da radiação , Transdução de Sinais/fisiologia , Nicotiana/genética , Nicotiana/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA