Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 19(6): 913-21, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24647732

RESUMO

Pseudoazurin (Paz) is the physiological electron donor to copper-containing nitrite reductase (Nir), which catalyzes the reduction of NO2 (-) to NO. The Nir reaction mechanism involves the reduction of the type 1 (T1) copper electron transfer center by the external physiological electron donor, intramolecular electron transfer from the T1 copper center to the T2 copper center, and nitrite reduction at the type 2 (T2) copper catalytic center. We report the cloning, expression, and characterization of Paz from Sinorhizobium meliloti 2011 (SmPaz), the ability of SmPaz to act as an electron donor partner of S. meliloti 2011 Nir (SmNir), and the redox properties of the metal centers involved in the electron transfer chain. Gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis together with UV-vis and EPR spectroscopies revealed that as-purified SmPaz is a mononuclear copper-containing protein that has a T1 copper site in a highly distorted tetrahedral geometry. The SmPaz/SmNir interaction investigated electrochemically showed that SmPaz serves as an efficient electron donor to SmNir. The formal reduction potentials of the T1 copper center in SmPaz and the T1 and T2 copper centers in SmNir, evaluated by cyclic voltammetry and by UV-vis- and EPR-mediated potentiometric titrations, are against an efficient Paz T1 center to Nir T1 center to Nir T2 center electron transfer. EPR experiments proved that as a result of the SmPaz/SmNir interaction in the presence of nitrite, the order of the reduction potentials of SmNir reversed, in line with T1 center to T2 center electron transfer being thermodynamically more favorable.


Assuntos
Azurina/metabolismo , Elétrons , Nitrito Redutases/metabolismo , Sinorhizobium meliloti/química , Azurina/química , Azurina/genética , Oxirredução , Sinorhizobium meliloti/metabolismo , Termodinâmica
2.
Proc Natl Acad Sci U S A ; 109(24): 9254-9, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645370

RESUMO

Protein-mediated electron transfer is an essential event in many biochemical processes. Efficient electron transfer requires the reorganization energy of the redox event to be minimized, which is ensured by the presence of rigid donor and acceptor sites. Electron transfer copper sites are present in the ubiquitous cupredoxin fold, able to bind one or two copper ions. The low reorganization energy in these metal centers has been accounted for by assuming that the protein scaffold creates an entatic/rack-induced state, which gives rise to a rigid environment by means of a preformed metal chelating site. However, this notion is incompatible with the need for an exposed metal-binding site and protein-protein interactions enabling metallochaperone-mediated assembly of the copper site. Here we report an NMR study that reveals a high degree of structural heterogeneity in the metal-binding region of the nonmetallated Cu(A)-binding cupredoxin domain, arising from microsecond to second dynamics that are quenched upon metal binding. We also report similar dynamic features in apo-azurin, a paradigmatic blue copper protein, suggesting a general behavior. These findings reveal that the entatic/rack-induced state, governing the features of the metal center in the copper-loaded protein, does not require a preformed metal-binding site. Instead, metal binding is a major contributor to the rigidity of electron transfer copper centers. These results reconcile the seemingly contradictory requirements of a rigid, occluded center for electron transfer, and an accessible, dynamic site required for in vivo copper uptake.


Assuntos
Azurina/metabolismo , Metais/metabolismo , Azurina/química , Sítios de Ligação , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular
3.
Curr Microbiol ; 57(4): 375-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18665419

RESUMO

Acidithiobacillus ferrooxidans is a gram-negative bacterium that obtains energy from the oxidation of ferrous iron or reduced sulfur compounds. In this bacterium, the proteins encoded by the rus operon are involved in electron transfer from Fe(II) to O(2), and the first two proteins in this pathway also participate in the electron transfer pathway from Fe(II) to NAD(P). In this work we analyzed the expression, by real-time PCR, of the eight genes from the rus operon when A. ferrooxidans LR was grown in the presence of iron (control) and then kept in contact with chalcopyrite (CuFeS(2)) and covellite (CuS). A small decrease in rus operon gene expression was observed in the presence of chalcopyrite, while in the presence of covellite the expression of these genes showed a remarkable decrease. These results can be explained by the absence of ferrous iron in covellite. To explain the expression difference observed between the gene cyc1 and the gene rus, we investigated the information content presented at the Translation Initiation Site (TIS) of both genes. cyc1 showed a highly information content (8.4 bits) that can maximize translation, and rus showed a less favorable context (5.5 bits). Our hypothesis is that the energetic metabolism in A. ferrooxidans may be controlled at the transcriptional and posttranscriptional level by different mechanisms.


Assuntos
Acidithiobacillus/crescimento & desenvolvimento , Azurina/metabolismo , Cobre/farmacologia , Grupo dos Citocromos c/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Acidithiobacillus/classificação , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Azurina/genética , Meios de Cultura , Grupo dos Citocromos c/genética , Transporte de Elétrons/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Reação em Cadeia da Polimerase , Transcrição Gênica
4.
Microbiology (Reading) ; 150(Pt 7): 2113-2123, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15256554

RESUMO

The regulation of the expression of the rus operon, proposed to encode an electron transfer chain from the outer to the inner membrane in the obligate acidophilic chemolithoautroph Acidithiobacillus ferrooxidans, has been studied at the RNA and protein levels. As observed by Northern hybridization, real-time PCR and reverse transcription analyses, this operon was more highly expressed in ferrous iron- than in sulfur-grown cells. Furthermore, it was shown by immunodetection that components of this respiratory chain are synthesized in ferrous iron- rather than in sulfur-growth conditions. Nonetheless, weak transcription and translation products of the rus operon were detected in sulfur-grown cells at the early exponential phase. The results strongly support the notion that rus-operon expression is induced by ferrous iron, in agreement with the involvement of the rus-operon-encoded products in the oxidation of ferrous iron, and that ferrous iron is used in preference to sulfur.


Assuntos
Acidithiobacillus/metabolismo , Azurina , Azurina/análogos & derivados , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Óperon , Acidithiobacillus/enzimologia , Acidithiobacillus/crescimento & desenvolvimento , Azurina/genética , Azurina/metabolismo , Proteínas de Bactérias/genética , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA