Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Food Chem ; 460(Pt 1): 140454, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39033642

RESUMO

This work describes determining urea in milk samples using a multicommuted approach with a urease enzyme immobilized in bacterial cellulose and solid MOF as a colorimetric reagent. The Cu(2+)-MOF was characterized by FTIR spectroscopy, XRD, and SEM. The urea quantification was based on the urea hydrolysis reaction catalyzed by urease and reacted with Cu(2+)-MOF forming [Cu(NH3)4]2+, monitored at 450 nm. Linear responses were obtained from 1.0 to 50.0 mg dL-1 urea (R = 0.9959, n = 11), detection and quantitation limits of 0.082 mg dL-1 and 0.272 mg dL-1 respectively, analytical frequency of 8 determinations per hour, 0.8 mL sample solution consumption. Potential interfering studies have shown the selectivity of the proposed method. Addition and recovery tests were performed obtaining variation from 90 to 103%. Applying the F-test and t-test, the results showed no significant difference at the 95% confidence level Comparing the proposed and the reference method.


Assuntos
Celulose , Colorimetria , Cobre , Enzimas Imobilizadas , Leite , Ureia , Urease , Urease/química , Leite/química , Animais , Colorimetria/métodos , Enzimas Imobilizadas/química , Celulose/química , Cobre/química , Ureia/química , Ureia/análise , Estruturas Metalorgânicas/química , Bovinos , Espectrofotometria , Bactérias/enzimologia , Bactérias/química , Bactérias/isolamento & purificação
2.
Int J Biol Macromol ; 275(Pt 2): 133396, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945719

RESUMO

Bacterial cellulose (BC) emerges as a versatile biomaterial with a myriad of industrial applications, particularly within the cosmetics sector. The absence of hemicellulose, lignin, and pectin in its pure cellulose structure enables favorable interactions with both hydrophilic and hydrophobic biopolymers. This enhances compatibility with active ingredients commonly employed in cosmetics, such as antioxidants, vitamins, and botanical extracts. Recent progress in BC-based materials, which encompasses membranes, films, gels, nanocrystals, and nanofibers, highlights its significant potential in cosmetics. In this context, BC not only serves as a carrier for active ingredients but also plays a crucial role as a structural agent in formulations. The sustainability of BC production and processing is a central focus, highlighting the need for innovative approaches to strengthen scalability and cost-effectiveness. Future research endeavors, including the exploration of novel cultivation strategies and functionalization techniques, aim to maximize BC's therapeutic potential while broadening its scope in personalized skincare regimes. Therefore, this review emphasizes the crucial contribution of BC to the cosmetics sector, underlining its role in fostering innovation, sustainability, and ethical skincare practices. By integrating recent research findings and industry trends, this review proposes a fresh approach to advancing both skincare science and environmental responsibility in the cosmetics industry.


Assuntos
Bactérias , Celulose , Cosméticos , Bactérias/química , Celulose/biossíntese , Celulose/química , Celulose/isolamento & purificação , Fermentação , Regulamentação Governamental , Crescimento Sustentável
3.
Appl Microbiol Biotechnol ; 108(1): 375, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878165

RESUMO

The selection of oleaginous bacteria, potentially applicable to biotechnological approaches, is usually carried out by different expensive and time-consuming techniques. In this study, we used Oil Red O (ORO) as an useful dye for staining of neutral lipids (triacylglycerols and wax esters) on thin-layer chromatography plates. ORO could detect minimal quantities of both compounds (detection limit, 0.0025 mg of tripalmitin or 0.005 mg of cetylpalmitate). In addition, we developed a specific, rapid, and inexpensive screening methodology to detect triacylglycerol-accumulating microorganisms grown on the agar plate. This staining methodology detected 9/13 strains with a triacylglycerol content higher than 20% by cellular dry weight. ORO did not stain polyhydroxyalkanoates-producing bacteria. The four oleaginous strains not detected by this screening methodology exhibited a mucoid morphology of their colonies. Apparently, an extracellular polymeric substance produced by these strains hampered the entry of the lipophilic dye into cells. The utilization of the developed screening methodology would allow selecting of oleaginous bacteria in a simpler and faster way than techniques usually used nowadays, based on unspecific staining protocols and spectrophotometric or chromatographic methods. Furthermore, the use of ORO as a staining reagent would easily characterize the neutral lipids accumulated by microorganisms as reserve compounds. KEY POINTS: • Oil Red O staining is specific for triacylglycerols • Oil Red O staining is useful to detect oleaginous bacteria • Fast and inexpensive staining to isolate oleaginous bacteria from the environment.


Assuntos
Compostos Azo , Bactérias , Coloração e Rotulagem , Triglicerídeos , Cromatografia em Camada Fina , Coloração e Rotulagem/métodos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/química , Compostos Azo/metabolismo , Compostos Azo/química , Triglicerídeos/metabolismo , Triglicerídeos/análise , Técnicas Bacteriológicas/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37075336

RESUMO

Acid-fast bacteria can be implicated in skin and soft tissue infections. Diagnostic identification can be challenging or not feasible by routine laboratory techniques, especially if there is no access to the Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) technology. Here, we present two cases of skin and soft tissue infections caused by two different acid-fast bacteria, Nocardia brasiliensis and Mycobacterium marinum. They both grew on Löwenstein-Jensen medium, Sabouraud agar medium and blood agar medium. Both bacteria appeared acid-fast by Ziehl-Neelsen stain and Gram-positive by Gram stain. The identification was performed by MALDI-TOF MS and gene analysis. N. brasiliensis and nontuberculous mycobacterium M. marinum represent rare pathogens that cause severe skin and soft tissue infections. Failure to identify the causative agent and subsequent inappropriate or inadequate treatment may lead to severe complications or even disseminated disease, especially in immunocompromised individuals.


Assuntos
Mycobacterium marinum , Infecções dos Tecidos Moles , Humanos , Ágar , Infecções dos Tecidos Moles/diagnóstico , Bactérias/química , Meios de Cultura/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
5.
Braz J Microbiol ; 54(2): 827-839, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36899290

RESUMO

Nyctanthes arbor-tristis is one of India's valuable and populous medicinal plants which belongs to the family Oleaceae, and widely recognize as night jasmine. Over the years till date, different parts of the plant are used to treat or cure different ailments via various means of traditional medicine. Endophytes are organisms that live in the cell or body of other organisms with no apparent negative impact on the host which they inhabit and are of great source of novel bioactive compounds possessing important economic value. Secondary metabolites were identified in the aqueous extract of Cronobactersakazakii through quantitative phytochemical and GC-MS analysis. Antibacterial activity of the extract against clinical and ATCC strains of E. coli was assessed. Biological activity spectra of these compounds were predicted and categorized either as probably active (Pa) or probably inactive (Pi). Drug-likeness of bioactive compounds was determined as well as their ability to target protein (CTXM-15) responsible for antibiotic resistance in Gram-negative bacteria. Results revealed the presence of active compounds with pharmacological activities and considerable pharmacokinetics parameters. In addition, ligand-protein interactions of compounds with CTXM-15 proteins were identified. These results suggest that bioactive compounds of endophytic Cronobactersakazakii could contain novel chemical entities for the development of antibiotics against pathogenic microbes and other drugs for the amelioration of several infections.


Assuntos
Bactérias , Plantas Medicinais , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/química , Endófitos/metabolismo , Escherichia coli , Testes de Sensibilidade Microbiana , Plantas Medicinais/microbiologia
6.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364026

RESUMO

Genistein is an isoflavone with antioxidant, anti-inflammatory, and anticancer properties. That said, its use in the industry is limited by its low solubility in aqueous systems. In this work, bacterial nanocellulose (BNC) and BNC modified with cetyltrimethylammonium (BNC-CTAB) were evaluated as genistein-encapsulating materials for their controlled release in cancer chemoprevention. Thin films were obtained and characterized by contact angle, AFM, TEM, UV-Vis spectroscopy FTIR, and TGA techniques to verify surface modification and genistein encapsulation. The results show a decrease in hydrophilization degree and an increase in diameter after BNC modification. Furthermore, the affinity of genistein with the encapsulating materials was determined in the context of monolayer and multilayer isotherms, thermodynamic parameters and adsorption kinetics. Spontaneous, endothermic and reversible adsorption processes were found for BNC-GEN and BNC-CTAB-GEN. After two hours, the maximum adsorption capacity corresponded to 4.59 mg GEN∙g-1 BNC and 6.10 mg GEN∙g-1 BNC-CTAB; the latter was a more stable system. Additionally, in vitro release assays performed with simulated gastrointestinal fluids indicated controlled and continuous desorption in gastric and colon fluids, with a release of around 5% and 85%, respectively, for either system. Finally, the IC50 tests made it possible to determine the amounts of films required to achieve therapeutic concentrations for SW480 and SW620 cell lines.


Assuntos
Celulose , Neoplasias Colorretais , Humanos , Celulose/química , Adsorção , Genisteína/farmacologia , Cetrimônio , Bactérias/química , Sistemas de Liberação de Medicamentos , Neoplasias Colorretais/prevenção & controle
7.
Future Microbiol ; 17: 1409-1419, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36169347

RESUMO

Microbiology culture is the gold standard method for identifying microorganisms. This identification protocol takes several days to complete. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a technique that can identify different microorganisms quickly and accurately. The objective of this work was to evaluate the use of MALDI-TOF MS in the routine of clinical laboratories to identify microorganisms and to identify their resistance to antimicrobials. This study evaluated the relevance of the MALDI-TOF MS technique for microbiological diagnosis through a literature review. The authors found that MALDI-TOF MS can identify bacteria, fungi, viruses and parasites, even in blood cultures, and also serves to assess antimicrobial resistance. Thus, MALDI-TOF MS can become an indispensable tool in laboratory diagnosis.


Assuntos
Bactérias , Fungos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fungos/química , Bactérias/química , Técnicas de Laboratório Clínico/métodos , Lasers
8.
Sci Rep ; 11(1): 16286, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381106

RESUMO

Biosurfactants are amphiphilic surface-active molecules of microbial origin principally produced by hydrocarbon-degrading bacteria; in addition to the bioremediation properties, they can also present antimicrobial activity. The present study highlights the chemical characterization and the antimicrobial activities of biosurfactants produced by deep-sea marine bacteria from the genera Halomonas, Bacillus, Streptomyces, and Pseudomonas. The biosurfactants were extracted and chemically characterized through Chromatography TLC, FT-IR, LC/ESI-MS/MS, and a metabolic analysis was done through molecular networking. Six biosurfactants were identified by dereplication tools from GNPS and some surfactin isoforms were identified by molecular networking. The half-maximal inhibitory concentration (IC50) of biosurfactant from Halomonas sp. INV PRT125 (7.27 mg L-1) and Halomonas sp. INV PRT124 (8.92 mg L-1) were most effective against the pathogenic yeast Candida albicans ATCC 10231. For Methicillin-resistant Staphylococcus aureus ATCC 43300, the biosurfactant from Bacillus sp. INV FIR48 was the most effective with IC50 values of 25.65 mg L-1 and 21.54 mg L-1 for C. albicans, without hemolytic effect (< 1%), and non-ecotoxic effect in brine shrimp larvae (Artemia franciscana), with values under 150 mg L-1, being a biosurfactant promising for further study. The extreme environments as deep-sea can be an important source for the isolation of new biosurfactants-producing microorganisms with environmental and pharmaceutical use.


Assuntos
Antibacterianos/química , Bactérias/química , Tensoativos/química , Sedimentos Geológicos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectrometria de Massas em Tandem/métodos
9.
Front Immunol ; 12: 562244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981296

RESUMO

Polyvalent bacterial lysates have been in use for decades for prevention and treatment of respiratory infections with reported clinical benefits. However, besides claims of broad immune activation, the mode of action is still a matter of debate. The lysates, formulated with the main bacterial species involved in respiratory infections, are commonly prepared by chemical or mechanical disruption of bacterial cells, what is believed influences the biological activity of the product. Here, we prepared two polyvalent lysates with the same composition but different method of bacterial cell disruption and evaluated their biological activity in a comparative fashion. We found that both bacterial lysates induce NF-kB activation in a MyD88 dependent manner, suggesting they work as TLR agonists. Further, we found that a single intranasal dose of any of the two lysates, is sufficient to protect against pneumococcal pneumonia, suggesting that they exert similar biological activity. We have previously shown that protection against pneumococcal pneumonia can also be induced by prior S. pneumoniae sub lethal infection or therapeutic treatment with a TLR5 agonist. Protection in those cases depends on neutrophil recruitment to the lungs, and can be associated with increased local expression of IL-17A. Here, we show that bacterial lysates exert protection against pneumococcal pneumonia independently of neutrophils, IL-17A or Caspase-1/11 activation, suggesting the existence of redundant mechanisms of protection. Trypsin-treated lysates afford protection to the same extent, suggesting that just small peptides suffice to exert the protective effect or that the molecules responsible for the protective effect are not proteins. Understanding the mechanism of action of bacterial lysates and deciphering the active components shall allow redesigning them with more precisely defined formulations and expanding their range of action.


Assuntos
Bactérias/química , Fatores Biológicos/farmacologia , Caspase 1/metabolismo , Interleucina-17/metabolismo , Neutrófilos/metabolismo , Pneumonia Pneumocócica/prevenção & controle , Streptococcus pneumoniae/efeitos dos fármacos , Células A549 , Animais , Fatores Biológicos/química , Ativação Enzimática , Humanos , Camundongos , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Streptococcus pneumoniae/fisiologia , Análise de Sobrevida , Células THP-1
10.
Gut Microbes ; 13(1): 1-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34006192

RESUMO

Humans live in symbiosis with a diverse community of microorganisms, which has evolved to carry out many specific tasks that benefit the host, including protection against invading pathogens. Within the chemical diversity of the gastrointestinal tract, small molecules likely constitute chemical cues for the communication between the microbiota and pathogens. Therefore, we sought to investigate if molecules produced by the human gut microbiota show biological activity against the human pathogen Vibrio cholerae. To probe the effects of the gut metabolome on V. cholerae, we investigated its response to small-molecule extracts from human feces, from a complex bacterial community cultivated in vitro, and from culture supernatants of Enterocloster citroniae, Bacteroides thetaiotaomicron, and Bacteroides vulgatus. Using RNA sequencing, we determined the impact of the human gut metabolome on V. cholerae global gene expression. Among the genes downregulated in the presence of the fecal extract, the most overrepresented functional category was cell motility, which accounted for 39% of repressed genes. Repression of V. cholerae motility by the fecal extract was confirmed phenotypically, and E. citroniae extracts reproduced this phenotype. A complex in vitro microbial community led to increased motility, as did extracts from B. vulgatus, a species present in this community. Accordingly, mucin penetration was also repressed by fecal and E. citroniae extracts, suggesting that the phenotypes observed may have implications for host colonization. Together with previous studies, this work shows that small molecules from the gut metabolome may have a widespread, significant impact on microbe-microbe interactions established in the gut environment.


Assuntos
Bactérias/química , Bactérias/metabolismo , Microbioma Gastrointestinal , Metaboloma , Vibrio cholerae/crescimento & desenvolvimento , Adulto , Bactérias/classificação , Bactérias/genética , Fezes/química , Fezes/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Interações Microbianas , Plâncton/genética , Plâncton/fisiologia , Vibrio cholerae/genética , Vibrio cholerae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA