Your browser doesn't support javascript.
loading
Mostrar:20 |50 |100
Resultados 1 -20 de 45.322
Filtrar
1.
Ecol Appl ;34(1): e2807, 2024 Jan.
ArtigoemInglês |MEDLINE | ID: mdl-36691856

RESUMO

Many terrestrial ecosystems are co-invaded by multiple exotic species. The "invasional meltdown" hypothesis predicts that an initial invasive species will facilitate secondary invasions. In the plant kingdom, the potential underlying mechanisms of this hypothesis may be that modification of the soil properties by the initial invaders benefits for the subsequent exotic species invasion. In this study, we analyzed the composition of soil microbial communities and soil chemical properties from sites invaded by woody Rhus typhina, as well as uninvaded sites, to assess the impact of R. typhina invasion. Furthermore, we conducted a greenhouse experiment with multiple native-invasive pairs of herbaceous species to test whether R. typhina invasion facilitates subsequent exotic herb invasion. Our results showed that R. typhina invasion significantly altered the composition of soil fungal communities, especially pathogenic, endophytic, and arbuscular mycorrhizal fungi. However, this change in microbial composition led to neither direction nor magnitude changes in negative plant-soil feedback effects on both native and invasive species. This indicates that initial R. typhina invasion does not facilitate subsequent herb invasion, which does not support the "invasional meltdown" hypothesis. Additionally, R. typhina invasion significantly decreased soil total nitrogen and organic carbon contents, which may explain the significantly lower biomass of herbaceous roots grown in invaded soils compared with uninvaded soils. Alternately, although invasive herb growth was significantly more inhibited by soil microbiota compared with native herb growth, such inhibition cannot completely eliminate the risk of exotic herb invasion because of their innate growth advantages. Therefore, microbial biocontrol agents for plant invasion management should be combined with another approach to suppress the innate growth advantages of exotic species.


Assuntos
Microbiota, Micorrizas, Solo/química, Micorrizas/fisiologia, Madeira, Biomassa, Espécies Introduzidas, Microbiologia do Solo
2.
Crit Rev Biotechnol ;44(2): 218-235, 2024 Mar.
ArtigoemInglês |MEDLINE | ID: mdl-36592989

RESUMO

The pretreatment and the enzymatic saccharification are the key steps in the extraction of fermentable sugars for further valorization of lignocellulosic biomass (LCB) to biofuels and value-added products via biochemical and/or chemical conversion routes. Due to low density and high-water absorption capacity of LCB, the large volume of water is required for its processing. Integration of pretreatment, saccharification, and co-fermentation has succeeded and well-reported in the literature. However, there are only few reports on extraction of fermentable sugars from LCB with high biomass loading (>10% Total solids-TS) feasible to industrial reality. Furthermore, the development of enzymatic cocktails can overcome technology hurdles with high biomass loading. Hence, a better understanding of constraints involved in the development of technology with high biomass loading can result in an economical and efficient yield of fermentable sugars for the production of biofuels and bio-chemicals with viable titer, rate, and yield (TRY) at industrial scale. The present review aims to provide a critical assessment on the production of fermentable sugars from lignocelluloses with high solid biomass loading. The impact of inhibitors produced during both pretreatment and saccharification has been elucidated. Moreover, the limitations imposed by high solid loading on efficient mass transfer during saccharification process have been elaborated.


Assuntos
Biocombustíveis, Lignina, Lignina/metabolismo, Açúcares, Tecnologia, Biomassa, Água, Hidrólise
3.
Int J Environ Health Res ;34(4): 1861-1878, 2024 Apr.
ArtigoemInglês |MEDLINE | ID: mdl-36617396

RESUMO

The antibiofilm, antibacterial, antioxidant, and anticancer activities of the methanolic extract of Padina pavonica L. were determined. Results deduced that the algal extract had a high biofilm formation inhibitory action done via crystal violet (CV) assay, to 88-99%. The results showed a strong antibacterial against the identified bacteria species. Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Klebsiella pneumonia, Bacillus subtilis, and the extract had moderate antibacterial activity against Escherichia coli, Pseudomonas fluorescens and Streptococcus agalactiae. The algal extract has a concentration-dependent DPPH radical scavenging activity (84.59%, with IC50 = 170.31 µg/ml). The inhibitory percent of P. pavonica methanolic extract in vitro antiproliferative activity was 1.79-98.25% with IC50 = 15.14 µg/ml against lung carcinoma. Phenols, terpenes, amino acids, alkaloids, flavones, alcohols, and fatty acids were among the metabolites whose biological actions were evaluated. In conclusion, for the first time, P. pavonica methanolic extract exhibited effective antibiofilm, antibacterial, antioxidant, and anticancer activities. .


Assuntos
Antioxidantes, Extratos Vegetais, Antioxidantes/farmacologia, Antioxidantes/química, Extratos Vegetais/farmacologia, Extratos Vegetais/química, Biomassa, Antibacterianos/farmacologia, Metanol, Biofilmes
4.
Mass Spectrom Rev ;43(2): 369-408, 2024.
ArtigoemInglês |MEDLINE | ID: mdl-36727592

RESUMO

Biomass-derived degraded lignin and cellulose serve as possible alternatives to fossil fuels for energy and chemical resources. Fast pyrolysis of lignocellulosic biomass generates bio-oil that needs further refinement. However, as pyrolysis causes massive degradation to lignin and cellulose, this process produces very complex mixtures. The same applies to degradation methods other than fast pyrolysis. The ability to identify the degradation products of lignocellulosic biomass is of great importance to be able to optimize methodologies for the conversion of these mixtures to transportation fuels and valuable chemicals. Studies utilizing tandem mass spectrometry have provided invaluable, molecular-level information regarding the identities of compounds in degraded biomass. This review focuses on the molecular-level characterization of fast pyrolysis and other degradation products of lignin and cellulose via tandem mass spectrometry based on collision-activated dissociation (CAD). Many studies discussed here used model compounds to better understand both the ionization chemistry of the degradation products of lignin and cellulose and their ions' CAD reactions in mass spectrometers to develop methods for the structural characterization of the degradation products of lignocellulosic biomass. Further, model compound studies were also carried out to delineate the mechanisms of the fast pyrolysis reactions of lignocellulosic biomass. The above knowledge was used to assign likely structures to many degradation products of lignocellulosic biomass.


Assuntos
Lignina, Espectrometria de Massas em Tandem, Lignina/química, Espectrometria de Massas em Tandem/métodos, Biomassa, Celulose
5.
Water Res ;249: 120949, 2024 Feb 01.
ArtigoemInglês |MEDLINE | ID: mdl-38070348

RESUMO

The start-up and stable operation of partial nitritation-anammox (PN/A) treatment of mature landfill leachate (MLL) still face challenges. This study developed an innovative staged pilot-scale PN/A system to enhance nitrogen removal from MLL. The staged process included a PN unit, an anammox upflow enhanced internal circulation biofilm (UEICB) reactor, and a post-biofilm unit. Rapid start-up of the continuous flow PN process (full-concentration MLL) was achieved within 35 days by controlling dissolved oxygen and leveraging free ammonia and free nitrous acid to selectively suppress nitrite-oxidizing bacteria (NOB). The UEICB was equipped with an annular flow agitator combined with the enhanced internal circulation device of the guide tube, which achieved an efficient enrichment of Candidatus Kuenenia in the biofilm (relative abundance of 33.4 %). The nitrogen removal alliance formed by the salt-tolerant anammox bacterium (Candidatus Kuenenia) and denitrifying bacteria (unclassified SBR1031 and Denitratisoma) achieved efficient nitrogen removal of UEICB (total nitrogen removal percentage: 90.8 %) and at the same time effective treatment of the refractory organic matter (ROM). The dual membrane process of UEICB fixed biofilm combined with post-biofilm is effective in sludge retention, and can stably control the effluent suspended solids (SS) at a level of less than 5 mg/L. The post-biofilm unit ensured that effluent total nitrogen (TN) remained below the 40 mg/L discharge standard (98.5 % removal efficiency). Compared with conventional nitrification-denitrification systems, the staged PN/A process substantially reduced oxygen consumption, sludge production, CO2 emissions and carbon consumption by 22.8 %, 67.1 %, 87.1 % and 87.1 %, respectively. The 195-day stable operation marks the effective implementation of the innovative pilot-scale PN/A process in treating actual MLL. This study provides insights into strategies for rapid start-up, robust NOB suppression, and anammox biomass retention to advance the application of PN/A in high-ammonia low-carbon wastewater.


Assuntos
Desnitrificação, Poluentes Químicos da Água, Amônia, Nitritos, Nitrogênio, Esgotos, Biomassa, Oxidação Anaeróbia da Amônia, Reatores Biológicos/microbiologia, Oxirredução, Nitrificação, Bactérias, Carbono
6.
Mar Pollut Bull ;198: 115865, 2024 Jan.
ArtigoemInglês |MEDLINE | ID: mdl-38070398

RESUMO

Coastal German waters contain about 1.6 million tons of dumped munition, mostly left after World Wars. This study investigated the benthic macrofauna around the 'Kolberger Heide' munition dumpsite (Baltic Sea). A total of 93 macrofauna grab samples were obtained in the proximity of the munition dumpsite and in reference areas. Environmental variables analysed included the latitude/longitude, depth, terrain ruggedness, sediment grainsize distribution, TNT concentration in the bottom water and distance to the centre of munition dumpsite. The overall abundance, biomass and diversity varied among these groups, though demonstrated no clear differences regarding the proximity to munition and modelled near-bottom dissolved TNT. Among individual taxa, however, a total of 16 species demonstrated significant correlation with TNT concentration. Moreover, TNT may serve as a predictor for the distribution of three species: molluscs Retusa truncatula, Varicorbula gibba and polychaete Spio goniocephala. Possible reasons for the species distribution including their biological traits are discussed.


Assuntos
Biodiversidade, Poluentes Químicos da Água, Países Bálticos, Poluentes Químicos da Água/análise, Biomassa, Água/análise, Monitoramento Ambiental
7.
Chemosphere ;349: 140904, 2024 Feb.
ArtigoemInglês |MEDLINE | ID: mdl-38070604

RESUMO

The strategy of nitrogen sufficiency conversion can improve ammonium nitrogen (NH4+-N) removal with microalgal cells from ammonium-rich wastewater. We selected and identified one promising isolated algal strain, NCU-7, Chlorella sorokiniana, which showed a high algal yield and tolerance to ammonium in wastewater, as well as strong adaptability to N deprivation. The transition from N deprivation through mixotrophy (DN, M) to N sufficiency through autotrophy (SN, P) achieved the highest algal yields (optical density = 1.18 and 1.59) and NH4+-N removal rates (2.5 and 4.2 mg L-1 d-1) from synthetic wastewaters at two NH4+-N concentrations (160 and 320 mg L-1, respectively). Algal cells in DN, M culture obtained the lowest protein content (20.6%) but the highest lipid content (34.0%) among all cultures at the end of the stage 2. After transferring to stage 3, the lowest protein content gradually recovered to almost the same level as SN, P culture on the final day. Transmission electron microscopy and proteomics analysis demonstrated that algal cells had reduced intracellular protein content but accumulated lipids under N deprivation by regulating the reduction in synthesis of protein, carbohydrate, and chloroplast, while enhancing lipid synthesis. After transferring to N sufficiency, algal cells accelerated their growth by recovering protein synthesis, leading to excessive uptake of NH4+-N from wastewater. This study provides specific insights into a nitrogen sufficiency conversion strategy to enhance algal growth and NH4+-N removal/uptake during microalgae-based ammonium-rich wastewater treatment.


Assuntos
Compostos de Amônio, Chlorella, Microalgas, Purificação da Água, Compostos de Amônio/metabolismo, Águas Residuárias, Chlorella/metabolismo, Microalgas/metabolismo, Nitrogênio/metabolismo, Biomassa, Lipídeos
8.
Environ Pollut ;342: 123108, 2024 Feb 01.
ArtigoemInglês |MEDLINE | ID: mdl-38070646

RESUMO

Environmental pollution by anthropogenic litter is a global concern, but studies specifically addressing the interaction between macroplastics and macroinvertebrates in streams are scarce. However, several studies on plant litter decomposition in streams have also used plastic strips as a methodological approach to assess if macroinvertebrates colonize plant litter mostly as a substrate or a food resource. Looking at these studies from the plastic strips perspective may provide useful information on the interaction between macroplastics and macroinvertebrates in streams. I carried out a meta-analysis of 18 studies that have compared macroinvertebrate colonization of macroplastic litter and plant litter in streams to estimate the overall macroinvertebrate colonization of macroplastic litter relative to plant litter, and identify moderators of this difference. Macroinvertebrate colonization of macroplastic litter was overall lower (by âˆ¼ 40%) compared with plant litter. However, differences in macroinvertebrate colonization between macroplastic litter and plant litter were observed when considering leaf litter but not wood litter, which may be a poorer substrate and food resource for macroinvertebrates. Also, differences in macroinvertebrate colonization between macroplastic litter and leaf litter were observed for shredders, collectors and predators, but not for grazers that may feed on the biofilm developed on macroplastics. Macroplastic litter supported lower macroinvertebrate density, biomass, abundance, and richness, but higher macroinvertebrate diversity than leaf litter. Higher macroinvertebrate diversity on macroplastic litter may have occurred when macroplastics represented more heterogeneous substrates (e.g., mixture of plastic types) than leaf litter (e.g., needles). Differences in macroinvertebrate abundance between macroplastic litter and leaf litter were not significantly affected by plastic type, mesh opening size, plant functional group or plant identity. By testing previously untested hypotheses, this meta-analysis guides future empirical studies. Future studies should also consider the geographical areas most affected by macroplastic pollution and the plastic types most often found in the streams.


Assuntos
Ecossistema, Invertebrados, Animais, Rios/química, Biomassa, Plantas, Folhas de Planta/química, Biodegradação Ambiental
9.
Environ Sci Pollut Res Int ;31(1): 331-342, 2024 Jan.
ArtigoemInglês |MEDLINE | ID: mdl-38012492

RESUMO

In shallow eutrophic lakes, submersed macrophytes are significantly influenced by two main factors: light availability and benthic fish disturbance. Plant foraging is one of the most crucial aspects of plant behavior. The present study was carried out to effects of light regimes and fish disturbance on the foraging behavior of Vallisneria natans in heterogeneous sediments. V. natans was cultivated in heterogeneous sediments with four treatments: high-light regime (H), high-light regime with benthic fish (HF), low-light regime (L), and low-light regime with benthic fish (LF). We use plant trait network analysis to evaluate the relationships between traits in heterogeneous sediments. We found the plant foraging intensity was positively correlated with trait network modularity. The biomass of stem, maternal plant biomass ratio, and ramet number were the hub traits of plant growing in heterogeneous habitats. Although the plant relative growth rate (RGR) was positively correlated with foraging intensity, the hub traits had closer links with plant RGR than foraging intensity. Light regime and benthic fish indirectly affected the plant foraging intensity by changing the chlorophyll a content and pH of overlying water. Overall, our analysis provides valuable insights into plant foraging behavior in response to environmental changes.


Assuntos
Ecossistema, Hydrocharitaceae, Animais, Clorofila A, Biomassa, Peixes, Lagos/química, Plantas
10.
Environ Pollut ;341: 122975, 2024 Jan 15.
ArtigoemInglês |MEDLINE | ID: mdl-37992951

RESUMO

The Himalayan region is adversely affected by the increasing anthropogenic emissions from the adjacent Indo-Gangetic plain. However, source apportionment studies for the Himalayan region that are crucial for estimating CO concentration, are grossly insufficient, to say the least. It is in this context that our study reported here assumes significance. This study utilizes five years (2014-2018) of ground-based observations of eBC and multiple linear regression framework (MLR) to estimate CO and segregate its fossil fuel and biomass emission fractions at a high-altitude (1958 m) site in the Central Himalayas. The results show that MERRA2 always underestimates the observed CO; MOPITT has a high monthly difference ranging from -32% to +57% while WRF-Chem simulations underestimate CO from February to June and overestimate in other months. In contrast, CO estimated from MLR replicates diurnal and monthly variations and estimates CO with an r2 > 0.8 for 2014-2017. The CO predicted during 2018 closely follows the observed variations, and its mixing ratios lie within ±17% of the observed CO. The results reveal a unimodal diurnal variation of CO, COff (ff: fossil fuel) and CObb (bb: biomass burning) governed by the boundary layer evolution and upslope winds. COff has a higher diurnal amplitude (39.1-67.8 ppb) than CObb (5.7-33.5 ppb). Overall, COff is the major contributor (27%) in CO after its background fraction (58%). CObb fraction reaches a maximum (28%) during spring, a period of increased agricultural and forest fires in Northern India. In comparison, WRF-Chem tracer runs underestimate CObb (-38% to -98%) while they overestimate the anthropogenic CO during monsoon. This study thus attempts to address the lack of continuous CO monitoring and the need to segregate its fossil fuel and biomass sources, specifically over the Central Himalayas, by employing a methodology that utilizes the existing network of eBC observations.


Assuntos
Poluentes Atmosféricos, Incêndios Florestais, Poluentes Atmosféricos/análise, Biomassa, Combustíveis Fósseis/análise, Monitoramento Ambiental/métodos, Estações do Ano, Aerossóis/análise, Carbono/análise
11.
Bioresour Technol ;393: 130086, 2024 Feb.
ArtigoemInglês |MEDLINE | ID: mdl-37993064

RESUMO

Co-gasification of biomass with oil shale offers potential for integrating renewable and fossil energy sources, reducing reliance on fossil fuels. Biomass (pine and birch wood and bark) and oil shale blends (10-30 wt%) were gasified under CO2 conditions using thermogravimetric analysis coupled with mass spectrometry (TGA-MS), fixed-bed reactor, and gas chromatography. Results revealed an interaction between oil shale and biomass, enhancing CO and CH4 concentrations in the producer gas. Bark samples demonstrated higher CO concentrations compared to wood samples, particularly in pine, with 16.1 vol% and 5.4 vol%, respectively. While birch wood showed increased H2 evaporation in TGA-MS experiments, oil shale's impact on H2 concentration was inhibitive, as shown by quantitative analysis. Pine bark, with a threefold catalytic index compared to other biomass samples, demonstrated the highest total gas concentrations (19.2 vol%). Interestingly, pine bark char blends exhibited the lowest surface areas (up to 434 m2/g) among the tested samples.


Assuntos
Dióxido de Carbono, Biomassa, Cromatografia Gasosa-Espectrometria de Massas, Espectrometria de Massas/métodos
12.
Bioresour Technol ;393: 130078, 2024 Feb.
ArtigoemInglês |MEDLINE | ID: mdl-37993072

RESUMO

The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.


Assuntos
Petróleo, Poli-Hidroxialcanoatos, Plásticos, Biomassa
13.
Environ Sci Pollut Res Int ;31(2): 2187-2197, 2024 Jan.
ArtigoemInglês |MEDLINE | ID: mdl-38055168

RESUMO

Soil contamination with heavy metals and metalloids is a global concern nowadays. Phytoremediation is an eco-friendly, cost-effective, and sustainable way of mitigating such contamination by utilizing the plants' ability to accumulate, sequester, and stabilize elements. Biomass-producing plants may outperform hyperaccumulators in terms of total elemental removal and offer more cost-effectiveness through their usable biomass. Ipomoea carnea is a wild plant in the Asian region. It is resilient, spreads rapidly in a wide range of soil conditions, and has a high potential for biomass feedstock. In this work, we have tested this plant species for its growth performance and accumulation characteristics of Cr and As. In a pot experiment, the plants could easily grow from rootless stem segments in 2 weeks when garden soils are treated with 100-500 ppm of Cr and 20-300 ppm of As. Plant growth reduction was little at the moderate level of these elements, with a significant accumulation of elements in 45 days. Within this time, in the stems and leaves, the Cr concentrations were found to be 49 and 39 ppm, respectively, when treated with 500 ppm of Cr, whereas the As concentrations were obtained as 83 and 28 ppm, respectively, for the treatment with 300 ppm of As. To estimate the biomass production potential, the plant was grown with a density of 80,000 per ha under normal field conditions (without metal stress). At the harvest, the plants consisted of 80% stems, 11% leaves, and 9% belowground portions on a dry weight basis. The dry weight of stems, leaves, and belowground parts was 31.3%, 17.9%, and 23.7%, respectively. Overall, the estimated biomass was 25.8 Mg/ha/year from three harvests. The ability to regrow from the basal part makes it useful for continuous sequestration of toxic elements over multiple harvests. Our results show that I. carnea could lower Cr and As from contaminated soils and potentially a phytoremediation candidate considering accumulation rate and high amount of usable biomass production.


Assuntos
Arsênio, Ipomoea, Metais Pesados, Poluentes do Solo, Cromo/análise, Biomassa, Bioacumulação, Poluentes do Solo/análise, Plantas, Biodegradação Ambiental, Solo
14.
Environ Microbiol Rep ;16(1): e13215, 2024 Feb.
ArtigoemInglês |MEDLINE | ID: mdl-38062558

RESUMO

Tangel humus primarily occurs in montane and subalpine zones of the calcareous Alps that exhibit low temperatures and high precipitation sums. This humus form is characterized by inhibited carbon turnover and accumulated organic matter, leading to the typical thick organic layers. However, the reason for this accumulation of organic matter is still unclear, and knowledge about the microbial community within Tangel humus is lacking. Therefore, we investigated the prokaryotic and fungal communities along with the physical and chemical properties within a depth gradient (0-10, 10-20, 20-30, 30-40, 40-50 cm) of a Tangel humus located in the Northern Limestone Alps. We hypothesized that humus properties and microbial activity, biomass, and diversity differ along the depth gradient and that microbial key players refer to certain humus depths. Our results give the first comprehensive information about microbiota within the Tangel humus and establish a microbial zonation of the humus. Microbial activity, biomass, as well as microbial alpha diversity significantly decreased with increasing depths. We identified microbial biomarkers for both, the top and the deepest depth, indicating different, microbial habitats. The microbial characterization together with the established nutrient deficiencies in the deeper depths might explain reduced C-turnover and Tangel humus formation.


Assuntos
Microbiota, Solo, Solo/química, Carbono, Microbiologia do Solo, Biomassa
15.
Int J Biol Macromol ;257(Pt 1): 128587, 2024 Feb.
ArtigoemInglês |MEDLINE | ID: mdl-38065463

RESUMO

Biomass-based carbon aerogels hold promising application prospect in the field of supercapacitors. In this research, starch was selected as a raw material for preparing carbon aerogels. The preparation process of starch hydrogels was simplified by using KOH, which can change starch suspension into hydrogels at room temperature. Moreover, the molecular mixing of KOH and starch was realized, so that KOH can be fully utilized in the activation process. The specific surface area of the starch-based carbon aerogels prepared by this method was 1349 m2/g, and the proportion of micropores was 43.7 %. Remarkably, as electrode materials for supercapacitors, the starch-based carbon aerogels exhibited outstanding electrochemical performance. In a three-electrode system, the carbon aerogels exhibited specific capacitance of 211.5 F/g at 0.5 A/g and 138.5 F/g at 10 A/g, suggesting their suitability for high-current applications. In a symmetrical supercapacitor configuration, the materials exhibited an energy density of 11.3 Wh/kg at a power density of 0.5 kW/kg and the specific capacitance can maintain 98.91 % after 10,000 cycles. Overall, this work provides a new method for mixing activators, which will foster potential advances in starch based carbon aerogels.


Assuntos
Carbono, Hidrogéis, Biomassa, Capacitância Elétrica, Amido
16.
Sci Total Environ ;912: 168963, 2024 Feb 20.
ArtigoemInglês |MEDLINE | ID: mdl-38065504

RESUMO

Polysaccharide is an important biomass of algae. The sludge extract is rich in organic substances, which can be used by algae for biomass growth and high-value biomass synthesis, but its organic toxicity has an inhibitory effect on algae. To overcome inhibition and improve polysaccharide enrichment, Tetradesmus obliquus was cultured with sludge extract with different indole-3-acetic acid (IAA) concentrations. Within 30 days of the culture cycle, T. obliquus showed in good condition at the IAA dosage content of 10-6 M, the maximum cell density and dry weight were respectively (106.78 ± 2.20) × 106 cell/mL and 2.941 ± 0.067 g/L while the contents of chlorophyll-a, chlorophyll-b, and carotenoid were 1.79, 1.91 and 2.80 times that of the blank group, respectively. The highest polysaccharide accumulation was obtained under this culture condition, reaching 533.15 ± 21.11 mg/L on the 30th day, which was 2.49 times that in the blank group. By FT-IR and NMR analysis, it was found that the polysaccharides of T. obliquus were sulfated polysaccharide with glucose and rhamnose as the main monosaccharides. Proteomic showed that the up-regulation of A0A383WL26 and A0A383WLM8 enhanced the light trapping ability, and A0A383WMJ2 enhanced the accumulation of NADPH. The up-regulation of A0A383WHD5 and A0A383WAY6 indicated that IAA culture could repair the damage caused by sludge toxicity, thus promoting the accumulation of biomass. The above findings provided new insights into the mechanism of sludge toxicity removal of T. obliquus and the enhancement of the polysaccharide accumulation effect under different concentrations of IAA.


Assuntos
Clorofíceas, Ácidos Indolacéticos, Esgotos, Proteômica, Espectroscopia de Infravermelho com Transformada de Fourier, Clorofíceas/fisiologia, Clorofila, Polissacarídeos, Extratos Vegetais, Biomassa
17.
Math Biosci ;367: 109126, 2024 Jan.
ArtigoemInglês |MEDLINE | ID: mdl-38070765

RESUMO

Microorganisms regulate the expression of energetically expensive phenotypes via a collective decision-making mechanism known as quorum sensing (QS). This study investigates the intricate dynamics of biofilm growth and QS-controlled biofilm dispersal in heterogeneous porous media, employing a pore-scale reactive transport modeling approach. Model simulations carried out under various fluid flow conditions and biofilm growth scenarios reveal that QS processes are influenced not only by the biomass density of biofilm colonies but also by a complex interplay between pore architecture, flow velocity, and the rates of biofilm growth and dispersal. This study demonstrates that pore architecture controls the initiation of QS processes and advection gives rise to oscillatory growth of biofilms. Such oscillation is suppressed if biofilm dynamics are in favor of sustaining a sufficiently high signal concentration, such as fast growth or slow dispersal rates. By establishing a mathematical framework, this study contributes to the fundamental understanding of QS-controlled biofilm dynamics in complex environments.


Assuntos
Biofilmes, Percepção de Quorum, Percepção de Quorum/fisiologia, Porosidade, Biomassa
18.
Bioresour Technol ;393: 129989, 2024 Feb.
ArtigoemInglês |MEDLINE | ID: mdl-37931765

RESUMO

The effect of tissue-specific biochemical heterogeneities of lignocellulosic biomass on biomass deconstruction is best understood through confocal laser scanning microscopy (CLSM) combined with immunohistochemistry. However, this process can be challenging, given the fragility of plant materials, and is generally not able to observe changes in the same section of biomass during both pretreatment and enzymatic hydrolysis. To overcome this challenge, a custom polydimethylsiloxane (PDMS) microfluidic imaging reactor was constructed using standard photolithographic techniques. As proof of concept, CLSM was performed on 60 µm-thick corn stem sections during pretreatment and enzymatic hydrolysis using the imaging reactor. Based on the fluorescence images, the less lignified parenchyma cell walls were more susceptible to pretreatment than the lignin-rich vascular bundles. During enzymatic hydrolysis, the highly lignified protoxylem cell wall was the most resistant, remaining unhydrolyzed even after 48 h. Therefore, imaging thin whole biomass sections was useful to obtain tissue-specific changes during biomass deconstruction.


Assuntos
Lignina, Microfluídica, Biomassa, Hidrólise, Imagem com Lapso de Tempo
19.
Int J Biol Macromol ;256(Pt 2): 127915, 2024 Jan.
ArtigoemInglês |MEDLINE | ID: mdl-37939774

RESUMO

ß-Glucosidase exists in all areas of living organisms, and microbial ß-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of ß-glucosidase. This review proposes ways to improve ß-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of ß-glucosidase. Besides, the diversified industrial applications, challenges and prospects of ß-glucosidase are also described.


Assuntos
Lignina, beta-Glucosidase, beta-Glucosidase/metabolismo, Lignina/química, Fermentação, Engenharia Genética, Catálise, Biomassa, Biocombustíveis
20.
Chemosphere ;349: 140903, 2024 Feb.
ArtigoemInglês |MEDLINE | ID: mdl-38092167

RESUMO

CO2 absorption-microalgae conversion (CAMC) system is a promising carbon capture and utilization technology. However, the use of HCO3- as a carbon source often led to a slower growth rate of microalgae, which also limited the application of CAMC system. In this study, the assimilation efficiency of HCO3- in CAMC system was improved through mixotrophic, and the potential mechanism was investigated. The HCO3- assimilation efficiency and biomass under mixotrophic were 34.79% and 31.76% higher than that of control. Mixotrophic increased chlorophyll and phycocyanin content, which were beneficial to capture more light energy. The content of ATP and NADPH reached 566.86 µmol/gprot and 672.86 nmol/mgprot, which increased by 31.83% and 27.67% compared to autotrophic. The activity of carbonic anhydrase and Rubisco increased by 18.52% and 22.08%, respectively. Transcriptome showed that genes related to photosynthetic and respiratory electron transport were up-regulated. The synergy of photophosphorylation and oxidative phosphorylation greatly improved energy metabolism efficiency, thus accelerating the assimilation of HCO3-. These results revealed a potential mechanism of promoting the HCO3- assimilation under mixotrophic, it also provided a guidance for using CAMC system to serve carbon neutrality.


Assuntos
Bicarbonatos, Microalgas, Microalgas/metabolismo, Dióxido de Carbono/metabolismo, Fotossíntese, Carbono/metabolismo, Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...