Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Neuroscience ; 511: 39-52, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36156289

RESUMO

Cannabinoids regulate analgesia, which has aroused much interest in identifying new pharmacological therapies in the management of refractory pain. Voltage-gated Na+ channels (Navs) play an important role in inflammatory and neuropathic pain. In particular, Nav1.9 is involved in nociception and the understanding of its pharmacology has lagged behind because it is difficult to express in heterologous systems. Here, we utilized the chimeric channel hNav1.9_C4, that comprises the extracellular and transmembrane domains of hNav1.9, co-expressed with the ß1 subunit on CHO-K1 cells to characterize the electrophysiological effects of ACEA, a synthetic surrogate of the endogenous cannabinoid anandamide. ACEA induced a tonic block, decelerated the fast inactivation, markedly shifted steady-state inactivation in the hyperpolarized direction, decreasing the window current and showed use-dependent block, with a high affinity for the inactivated state (ki = 0.84 µM). Thus, we argue that ACEA possess a local anaesthetic-like profile. To provide a mechanistic understanding of its mode of action at the molecular level, we combined induced fit docking with Monte Carlo simulations and electrostatic complementarity. In agreement with the experimental evidence, our computer simulations revealed that ACEA binds Tyr1599 of the local anaesthetics binding site of the hNav1.9, contacting residues that bind cannabinol (CBD) in the NavMs channel. ACEA adopted a conformation remarkably similar to the crystallographic conformation of anandamide on a non-homologous protein, obstructing the Na+ permeation pathway below the selectivity filter to occupy a highly conserved binding pocket at the intracellular side. These results describe a mechanism of action, possibly involved in cannabinoid analgesia.


Assuntos
Ácidos Araquidônicos , Canabinoides , Humanos , Ácidos Araquidônicos/farmacologia , Canais de Sódio , Dor , Anestésicos Locais , Bloqueadores dos Canais de Sódio/farmacologia
3.
Biochem Soc Trans ; 50(6): 1737-1751, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36383062

RESUMO

Pyrethroids (PY) are synthetic pesticides used in many applications ranging from large-scale agriculture to household maintenance. Their classical mechanisms of action are associated with binding to the sodium channel of insect neurons, disrupting its inactivation, ensuring their use as insecticides. However, PY can also lead to toxicity in vertebrates, including humans. In most toxicological studies, the impact of PY on heart function is neglected. Acute exposure to a high dose of PY causes enhancement of the late sodium current (INaL), which impairs the action potential waveform and can cause severe cardiac arrhythmias. Moreover, long-term, low-dose exposure to PY displays oxidative stress in the heart, which could induce tissue remodeling and impairment. Isolated and preliminary evidence supports that, for acute exposure to PY, an antiarrhythmic therapy with ranolazine (an INaL blocker), can be a promising therapeutic approach. Besides, heart tissue remodeling associated with low doses and long-term exposure to PY seems to benefit from antioxidant therapy. Despite significant leaps in understanding the mechanical details of PY intoxication, currently, few studies are focusing on the heart. In this review, we present what is known and what are the gaps in the field of cardiotoxicity induced by PY.


Assuntos
Cardiotoxicidade , Piretrinas , Animais , Humanos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Piretrinas/toxicidade , Ranolazina , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo
4.
Clin Sci (Lond) ; 136(5): 329-343, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35190819

RESUMO

ß-Cyfluthrin, a class II Pyrethroid, is an insecticide used worldwide in agriculture, horticulture (field and protected crops), viticulture, and domestic applications. ß-Cyfluthrin may impair the function of biological systems; however, little information is available about its potential cardiotoxic effect. Here, we explored the acute toxicity of ß-Cyfluthrin in isolated heart preparations and its cellular basis, using isolated cardiomyocytes. Moreover, ß-Cyfluthrin effects on the sodium current, especially late sodium current (INa-L), were investigated using human embryonic kidney cells (HEK-293) cells transiently expressing human NaV1.5 channels. We report that ß-Cyfluthrin raised INa-L in a dose-dependent manner. ß-Cyfluthrin prolonged the repolarization of the action potential (AP) and triggered oscillations on its duration. Cardiomyocytes contraction and calcium dynamics were disrupted by the pesticide with a marked incidence of non-electronic-stimulated contractions. The antiarrhythmic drug Ranolazine was able to reverse most of the phenotypes observed in isolated cells. Lastly, ventricular premature beats (VPBs) and long QT intervals were found during ß-Cyfluthrin exposure, and Ranolazine was able to attenuate them. Overall, we demonstrated that ß-Cyfluthrin can cause significant cardiac alterations and Ranolazine ameliorated the phenotype. Understanding the insecticides' impacts upon electromechanical properties of the heart is important for the development of therapeutic approaches to treat cases of pesticides intoxication.


Assuntos
Inseticidas , Piretrinas , Potenciais de Ação , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Células HEK293 , Humanos , Inseticidas/toxicidade , Miócitos Cardíacos , Nitrilas , Fenótipo , Piretrinas/farmacologia , Ranolazina/farmacologia , Sódio , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
5.
J Econ Entomol ; 114(2): 903-913, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33604658

RESUMO

Spodoptera frugiperda (J.E. Smith) is one of the key cross-crop pests in Brazilian agroecosystems. Field-evolved resistance of S. frugiperda to some conventional insecticides and Bt proteins has already been reported. Thus, the use of insecticides with new mode of action such as sodium channel blockers (indoxacarb and metaflumizone) could be an important tool in insecticide resistance management (IRM) programs. To implement a proactive IRM, we conducted baseline response and monitoring to indoxacarb and metaflumizone in 87 field populations of S. frugiperda collected from major maize-growing regions of Brazil from 2017 to 2020, estimated the frequency of resistance alleles to indoxacarb, and evaluated cross-resistance of indoxacarb and metaflumizone to some selected insecticides and Bt proteins. Low variation in susceptibility to indoxacarb (4.6-fold) and metaflumizone (2.6-fold) was detected in populations of S. frugiperda in 2017. The frequency of the resistance allele to indoxacarb was 0.0452 (0.0382-0.0527 CI 95%), by using F2 screen method. The mean survival at diagnostic concentration, based on CL99, varied from 0.2 to 12.2% for indoxacarb and from 0.0 to 12.7% for metaflumizone, confirming high susceptibility of S. frugiperda to these insecticides in Brazil. No cross-resistance was detected between sodium channel blocker insecticides and other insecticides (organophosphate, pyrethroid, benzoylurea, spinosyn, and diamide) and Bt proteins. These findings showed that sodium channel blocker insecticides are important candidates to be exploited in IRM strategies of S. frugiperda in Brazil.


Assuntos
Inseticidas , Bloqueadores dos Canais de Sódio , Spodoptera , Animais , Proteínas de Bactérias/farmacologia , Brasil , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Bloqueadores dos Canais de Sódio/farmacologia , Zea mays
6.
Eur J Pharmacol ; 885: 173367, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750364

RESUMO

Existing evidence suggests that the local anaesthetic mexiletine can be beneficial for patients with asthma. However, caution is required since anaesthesia of the airways inhibits protective bronchodilator neuronal reflexes, limiting applications in conditions of hyperirritable airways. Here, we describe the synthesis of a new series of mexiletine analogues, which were screened for reduced activity in Na+ channels and improved smooth muscle relaxant effects, that were evaluated using the patch-clamp technique and an isolated tracheal organ bath, respectively. JME-173 (1-(4-bromo-3,5-dimethylphenoxy)propan-2-amine) was the most effective among the four mexiletine analogues investigated. JME-173 was then studied in vivo using a murine model of lung inflammation induced by cigarette smoke (CS) and in vitro using neutrophil chemotaxis and mast cell degranulation assays. Finally, the JME-173 pharmacokinetic profile was assessed using HPLC-MS/MS bioanalytical method. JME-173 directly inhibited IL-8 (CXCL8)- and FMLP-induced human neutrophil chemotaxis and allergen-induced mast cell degranulation. After oral administration 1 h before CS exposure, JME-173 (50 mg/kg) strongly reduced the increased number of macrophages and neutrophils recovered in the bronchoalveolar effluent without altering lymphocyte counts. Pharmacokinetic experiments of JME-173 (10 mg/kg, orally) showed values of maximum concentration (Cmax), maximum time (Tmax), area under the blood concentration-time curve (AUC0-t) and area under the blood concentration-time curve from 0-Inf (AUC0-inf) of 163.3 ± 38.3 ng/mL, 1.2 ± 0.3 h, 729.4 ± 118.3 ng*h/ml and 868.9 ± 117.1 ng*h/ml (means ± S.E.M.), respectively. Collectively, these findings suggest that JME-173 has the potential to be an effective oral treatment for diseases associated with bronchoconstriction and inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Mexiletina/análogos & derivados , Mexiletina/farmacologia , Parassimpatolíticos/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Animais , Área Sob a Curva , Líquido da Lavagem Broncoalveolar/citologia , Degranulação Celular/efeitos dos fármacos , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Camundongos , Infiltração de Neutrófilos/efeitos dos fármacos , Técnicas de Patch-Clamp , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Ratos , Ratos Wistar , Fumaça , Relação Estrutura-Atividade , Produtos do Tabaco
7.
Neurosci Lett ; 729: 135006, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32387758

RESUMO

Recently the voltage-gated sodium (Nav) channels began to be studied as possible targets for analgesic drugs. In addition, specific Nav 1.8 blockers are currently being used to treat some types of chronic pain pathologies such as neuropathies and fibromyalgia. Nav 1.8+ fibers convey nociceptive information to brain structures belonging to the limbic system, which is involved in the pathophysiology of major depressive disorders. From this, using a model of chronic social defeat stress (SDS) and intrathecal injections of Nav 1.8 antisense, this study investigated the possible involvement of Nav 1.8+ nociceptive fibers in SDS- induced hyperalgesia in C57/BL mice. Our results showed that SDS induced a depressive-like behavior of social avoidance and increased the sensitivity to mechanical (electronic von Frey test) and chemical (capsaicin test) nociceptive stimuli. We also showed that intrathecal injection of Nav 1.8 antisense reversed the SDS-induced hyperalgesia as demonstrated by both, mechanical and chemical nociceptive tests. We confirmed the antisense efficacy and specificity in a separate no-defeated cohort through real-time PCR, which showed a significant reduction of Nav 1.8 mRNA and no reduction of Nav 1.7 and Nav 1.9 in the L4, L5 and L6 dorsal root ganglia (DRG). The present study advances the understanding of SDS-induced hyperalgesia, which seems to be dependent on Nav 1.8+ nociceptive fibers.


Assuntos
Transtorno Depressivo Maior/fisiopatologia , Hiperalgesia/tratamento farmacológico , Derrota Social , Bloqueadores dos Canais de Sódio/farmacologia , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Tetrodotoxina/farmacologia
8.
J Cardiovasc Pharmacol ; 76(2): 164-172, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32453071

RESUMO

The mechanisms underlying atrial-selective prolongation of effective refractory period (ERP) and suppression of atrial fibrillation (AF) by NS8593 and UCL1684, small conductance calcium-activated potassium (SK) channel blockers, are poorly defined. The purpose of the study was to confirm the effectiveness of these agents to suppress AF and to probe the underlying mechanisms. Transmembrane action potentials and pseudoelectrocardiograms were recorded from canine isolated coronary-perfused canine atrial and ventricular wedge preparations. Patch clamp techniques were used to record sodium channel current (INa) in atrial and ventricular myocytes and human embryonic kidney cells. In both atria and ventricles, NS8593 (3-10 µM) and UCL1684 (0.5 µM) did not significantly alter action potential duration, suggesting little to no SK channel inhibition. Both agents caused atrial-selective: (1) prolongation of ERP secondary to development of postrepolarization refractoriness, (2) reduction of Vmax, and (3) increase of diastolic threshold of excitation (all are sodium-mediated parameters). NS8593 and UCL1684 significantly reduced INa density in human embryonic kidney cells as well as in atrial but not in ventricular myocytes at physiologically relevant holding potentials. NS8593 caused a shift of steady-state inactivation to negative potentials in atrial but not ventricular cells. NS8593 and UCL1684 prevented induction of acetylcholine-mediated AF in 6/6 and 8/8 preparations, respectively. This anti-AF effect was associated with strong rate-dependent depression of excitability. The SK channel blockers, NS8593 and UCL1684, are effective in preventing the development of AF due to potent atrial-selective inhibition of INa, causing atrial-selective prolongation of ERP secondary to induction of postrepolarization refractoriness.


Assuntos
1-Naftilamina/análogos & derivados , Alcanos/farmacologia , Antiarrítmicos/farmacologia , Fibrilação Atrial/prevenção & controle , Átrios do Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Compostos de Quinolínio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , 1-Naftilamina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Cães , Feminino , Células HEK293 , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Período Refratário Eletrofisiológico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo
9.
Synapse ; 74(3): e22137, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31584700

RESUMO

We examined effects of Group I metabotropic glutamate receptors on the excitability of mouse medial nucleus of the trapezoid body (MNTB) neurons. The selective agonist, S-3,5-dihydroxyphenylglycine (DHPG), evoked a dose-dependent depolarization of the resting potential, increased membrane resistance, increased sag depolarization, and promoted rebound action potential firing. Under voltage-clamp, DHPG evoked an inward current, referred to as IDHPG , which was developmentally stable through postnatal day P56. IDHPG had low temperature dependence in the range 25-34°C, consistent with a channel mechanism. However, the I-V relationship took the form of an inverted U that did not reverse at the calculated Nernst potential for K+ or Cl- . Thus, it is likely that more than one ion type contributes to IDHPG and the mix may be voltage dependent. IDHPG was resistant to the Na+ channel blockers tetrodotoxin and amiloride, and to inhibitors of iGluR (CNQX and MK801). IDHPG was inhibited 21% by Ba2+ (500 µM), 60% by ZD7288 (100 µM) and 73% when the two antagonists were applied together, suggesting that KIR channels and HCN channels contribute to the current. Voltage clamp measurements of IH indicated a small (6%) increase in Gmax by DHPG with no change in the voltage dependence. DHPG reduced action potential rheobase and reduced the number of post-synaptic AP failures during high frequency stimulation of the calyx of Held. Thus, activation of post-synaptic Group I mGlu receptors modifies the excitability of MNTB neurons and contributes to the reliability of high frequency firing in this auditory relay nucleus.


Assuntos
Potenciais de Ação , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Receptores de Glutamato Metabotrópico/metabolismo , Potenciais Sinápticos , Corpo Trapezoide/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Amilorida/farmacologia , Animais , Maleato de Dizocilpina/farmacologia , Feminino , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Pirimidinas/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Corpo Trapezoide/citologia , Corpo Trapezoide/efeitos dos fármacos , Corpo Trapezoide/fisiologia
10.
Dokl Biochem Biophys ; 484(1): 9-12, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31012002

RESUMO

An effective bacterial system for the production of ß-toxin Ts1, the main component of the Brazilian scorpion Tityus serrulatus venom, was developed. Recombinant toxin and its 15N-labeled analogue were obtained via direct expression of synthetic gene in Escherichia coli with subsequent folding from the inclusion bodies. According to NMR spectroscopy data, the recombinant toxin is structured in an aqueous solution and contains a significant fraction of ß-structure. The formation of a stable disulfide-bond isomer of Ts1, having a disordered structure, has also been observed during folding. Recombinant Ts1 blocks Na+ current through NaV1.5 channels without affecting the processes of activation and inactivation. At the same time, the effect upon NaV1.4 channels is associated with a shift of the activation curve towards more negative membrane potentials.


Assuntos
Venenos de Escorpião , Bloqueadores dos Canais de Sódio , Animais , Humanos , Proteínas Musculares/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Venenos de Escorpião/biossíntese , Venenos de Escorpião/química , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/isolamento & purificação , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA