Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 30(9): 1679-1689, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31190311

RESUMO

Bordetella bronchiseptica, known to infect animals and rarely humans, expresses a lipopolysaccharide that plays an essential role in host interactions, being critical for early clearance of the bacteria. On a B. bronchiseptica 9.73 isolate, mutants defective in the expression of genes involved in the biosynthesis of the core region were previously constructed. Herein, a comparative detailed structural analysis of the expressed lipids A by MALDI-TOF mass spectrometry was performed. The Bb3394 LPS defective in a 2-amino-2-deoxy-D-galacturonic acid lateral residue of the core presented a penta-acylated diglucosamine backbone modified with two glucosamine phosphates, similar to the wild-type lipid A. In contrast, BbLP39, resulting in the interruption of the LPS core oligosaccharide synthesis, presented lipid A species consisting in a diglucosamine backbone N-substituted with C14:0(3-O-C12:0) in C-2 and C14:0(3-O-C14:0) in C-2', O-acylated with C14:0(3-O-C10:0(3-OH) in C-3' and with a pyrophosphate in C-1. Regarding Bb3398 also presenting a rough LPS, the lipid A is formed by a hexa-acylated diglucosamine backbone carrying one pyrophosphate group in C-1 and one phosphate in C-4', both substituted with ethanolamine groups. As far as we know, this is the first description of a phosphoethanolamine modification in B. bronchiseptica lipid A. Our results demonstrate that although gene deletions were not directed to the lipid A moiety, each mutant presented different modifications. MALDI-TOF mass spectrometry was an excellent tool to highlight the structural diversity of the lipid A structures biosynthesized during its transit through the periplasm to the final localization in the outer surface of the outer membrane. Graphical Abstract.


Assuntos
Bordetella bronchiseptica/genética , Glicosiltransferases/genética , Lipídeo A/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bordetella bronchiseptica/química , Bordetella bronchiseptica/metabolismo , Difosfatos/química , Glucosamina/química , Glicosiltransferases/química , Lipídeo A/análise , Lipídeo A/genética , Mutação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
2.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180369

RESUMO

Bordetella bronchiseptica, a Gram-negative bacterium, causes chronic respiratory tract infections in a wide variety of mammalian hosts, including humans (albeit rarely). We recently designed Bordetella pertussis and Bordetella parapertussis experimental vaccines based on outer membrane vesicles (OMVs) derived from each pathogen, and we obtained protection against the respective infections in mice. Here, we demonstrated that OMVs derived from virulent-phase B. bronchiseptica (OMVBbvir+) protected mice against sublethal infections with different B. bronchiseptica strains, two isolated from farm animals and one isolated from a human patient. In all infections, we observed that the B. bronchiseptica loads were significantly reduced in the lungs of vaccinated animals; the lung-recovered CFU were decreased by ≥4 log units, compared with those detected in the lungs of nonimmunized animals (P < 0.001). In the OMVBbvir+-immunized mice, we detected IgG antibody titers against B. bronchiseptica whole-cell lysates, along with an immune serum having bacterial killing activity that both recognized B. bronchiseptica lipopolysaccharides and polypeptides such as GroEL and outer membrane protein C (OMPc) and demonstrated an essential protective capacity against B. bronchiseptica infection, as detected by passive in vivo transfer experiments. Stimulation of cultured splenocytes from immunized mice with OMVBbvir+ resulted in interleukin 5 (IL-5), gamma interferon (IFN-γ), and IL-17 production, indicating that the vesicles induced mixed Th2, Th1, and Th17 T-cell immune responses. We detected, by adoptive transfer assays, that spleen cells from OMVBbvir+-immunized mice also contributed to the observed protection against B. bronchiseptica infection. OMVs from avirulent-phase B. bronchiseptica and the resulting induced immune sera were also able to protect mice against B. bronchiseptica infection.IMPORTANCEBordetella bronchiseptica, a Gram-negative bacterium, causes chronic respiratory tract infections in a wide variety of mammalian hosts, including humans (albeit rarely). Several vaccines aimed at preventing B. bronchiseptica infection have been developed and used, but a safe effective vaccine is still needed. The significance and relevance of our research lie in the characterization of the OMVs derived from B. bronchiseptica as the source of a new experimental vaccine. We demonstrated here that our formulation based on OMVs derived from virulent-phase B. bronchiseptica (OMVBbvir+) was effective against infections caused by B. bronchiseptica isolates obtained from different hosts (farm animals and a human patient). In vitro and in vivo characterization of humoral and cellular immune responses induced by the OMVBbvir+ vaccine enabled a better understanding of the mechanism of protection necessary to control B. bronchiseptica infection. Here we also demonstrated that OMVs derived from B. bronchiseptica in the avirulent phase and the corresponding induced humoral immune response were able to protect mice from B. bronchiseptica infection. This realization provides the basis for the development of novel vaccines not only against the acute stages of the disease but also against stages of the disease or the infectious cycle in which avirulence factors could play a role.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Infecções por Bordetella/prevenção & controle , Bordetella bronchiseptica/citologia , Bordetella bronchiseptica/patogenicidade , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Infecções por Bordetella/imunologia , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/química , Bordetella bronchiseptica/imunologia , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/prevenção & controle , Células Th17/imunologia , Virulência
3.
Microbiology (Reading) ; 159(Pt 5): 869-879, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475948

RESUMO

The signalling molecule bis-(3'-5')-cyclic-dimeric guanosine monophosphate (c-di-GMP) is a central regulator of diverse cellular functions, including motility, biofilm formation, cell cycle progression and virulence, in bacteria. Multiple diguanylate cyclase and phosphodiesterase-domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) modulate the levels of the second messenger c-di-GMP to transmit signals and obtain such specific cellular responses. In the genus Bordetella this c-di-GMP network is poorly studied. In this work, we evaluated the expression of two phenotypes in Bordetella bronchiseptica regulated by c-di-GMP, biofilm formation and motility, under the influence of ectopic expression of Pseudomonas aeruginosa proteins with EAL or GGDEF domains that regulates the c-di-GMP level. In agreement with previous reports for other bacteria, we observed that B. bronchiseptica is able to form biofilm and reduce its motility only when GGDEF domain protein is expressed. Moreover we identify a GGDEF domain protein (BB3576) with diguanylate cyclase activity that participates in motility and biofilm regulation in B. bronchiseptica. These results demonstrate for the first time, to our knowledge, the presence of c-di-GMP regulatory signalling in B. bronchiseptica.


Assuntos
Biofilmes , Bordetella bronchiseptica/citologia , Bordetella bronchiseptica/metabolismo , GMP Cíclico/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella bronchiseptica/química , Bordetella bronchiseptica/genética , Regulação Bacteriana da Expressão Gênica , Estrutura Terciária de Proteína
4.
Microbiol Immunol ; 55(12): 847-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22039958

RESUMO

The present authors have previously obtained the Bordetella bronchiseptica mutant BbLP39, which contains a deep-rough lipopolysaccharide (LPS) instead the wild type smooth LPS with O antigen. This mutant was found to be altered in the expression of some proteins and in its ability to colonize mouse lungs. Particularly, in BbLP39 the expression of pertactin is decreased. To differentiate the contribution of each bacterial component to the observed phenotype, here mice defective in the LPS sensing receptor TLR4 (TLR4-defective mice) were used. In contrast to wild-type mice, infection of TLR4-defective mice with BbLP39 resulted in lung infection, which persisted for more than 10 days post-challenge. Comparative analysis of the immune responses induced by purified mutant and wild type LPSs showed that the mutant LPS induced significantly higher degrees of expression of TNF-α and IL-10 mRNA than did the wild type. UV matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry analysis revealed that both LPSs had the same penta-acylated lipid A structure. However, the lipid A from BbLP39 contained pyrophosphate instead of phosphate at position 1. This structural difference, in addition to the lack of O-antigen in BbLP39, may explain the functional differences between BbLP39 and wild type strains.


Assuntos
Infecções por Bordetella/imunologia , Bordetella bronchiseptica/química , Bordetella bronchiseptica/imunologia , Lipopolissacarídeos/química , Infecções Respiratórias/imunologia , Animais , Infecções por Bordetella/microbiologia , Bordetella bronchiseptica/genética , Citocinas/genética , Citocinas/metabolismo , Feminino , Lipídeo A/química , Lipídeo A/imunologia , Lipídeo A/isolamento & purificação , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/isolamento & purificação , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Mutação , Antígenos O/imunologia , Infecções Respiratórias/microbiologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
5.
Vet Microbiol ; 56(1-2): 65-77, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9228683

RESUMO

The bvg or vir locus positively regulates the expression of many Bordetella virulence-associated determinants (encoded by vag genes), including cell envelope proteins, in response to environmental stimuli. On the other hand, several genes named vrg genes are negatively controlled by the bvg regulon (Knapp and Mekalanos, 1988). Flagellin is encoded by a vrg gene, which is expressed when the principal virulence factors are eliminated during antigenic modulation or in phase variants (Akerley et al., 1992). We have previously analyzed SDS-PAGE profiles of Sarkosyl-outer membrane protein (OMP)-enriched fractions from B. bronchiseptica Bvg- and modulated Bvg+ strains and reported a major band associated with the avirulent phenotype (Passerini de Rossi et al., 1995). In order to characterize this band we have purified flagellar filaments from Bvg- and modulated Bvg+ strains, and analyzed them by SDS-PAGE. These profiles revealed a single major band of 40 or 45 kDa depending on the strain. The N-terminal amino acid sequence of the putative flagellin expressed by BB7200a was identical over the first 21 residues analyzed to that of the flagellin from the modulated strain BB7865 reported by Akerley et al. (1992). Comparison of the SDS-PAGE profile of flagellar filaments with that of the OMP-enriched fraction of the corresponding strain showed that the flagellum-associated polypeptide had the same electrophoretic mobility as that of the characteristic band of the avirulent phenotype. Furthermore, this band was absent in the OMP-enriched fraction profile from a Bvg- strain subjected to a treatment that removes flagella. Our results indicate that the major protein observed in SDS-PAGE profiles of Sarkosyl-OMP-enriched fractions from B. bronchiseptica Bvg- and modulated Bvg+ strains corresponds to flagellin.


Assuntos
Bordetella bronchiseptica/química , Flagelina/isolamento & purificação , Sequência de Aminoácidos , Animais , Bordetella bronchiseptica/genética , Cricetinae , Eletroforese em Gel de Poliacrilamida , Humanos , Dados de Sequência Molecular , Fenótipo , Coelhos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA