Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Horm Behav ; 162: 105527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492348

RESUMO

Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.


Assuntos
Bulbo Olfatório , Prolactina , Comportamento Sexual Animal , Animais , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/fisiologia , Feminino , Prolactina/metabolismo , Prolactina/farmacologia , Camundongos , Masculino , Comportamento Sexual Animal/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Receptores da Prolactina/metabolismo , Maturidade Sexual/fisiologia , Comportamento Social , Feromônios/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo
2.
Neurobiol Learn Mem ; 208: 107891, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237799

RESUMO

An operative olfactory bulb (OB) is critical to social recognition memory (SRM) in rodents, which involves identifying conspecifics. Furthermore, OB also allocates synaptic plasticity events related to olfactory memories in their intricate neural circuit. Here, we asked whether the OB is a target for brain-derived neurotrophic factor (BDNF), a well-known mediator of plasticity and memory. Adult ICR-CD1 male mice had their SRM evaluated under the inhibition of BDNF-dependent signaling directly in the OB. We also quantified the expression of BDNF in the OB, after SRM acquisition. Our results presented an amnesic effect of anti-BDNF administered 12 h post-training. Although the western blot showed no statistical difference in pro-BDNF and BDNF expression, the analysis of fluorescence intensity in slices suggests SRM acquisition decreases BDNF in the granular cell layer of the OB. Next, to test the ability of BDNF to rescue SRM deficit, we administered the human recombinant BDNF (rBDNF) directly in the OB of socially isolated (SI) mice. Unexpectedly, rBDNF did not rescue SRM in SI mice. Furthermore, BDNF and pro-BDNF expression in the OB was unchanged by SI. Our study reinforces the OB as a plasticity locus in memory-related events. It also adds SRM as another type of memory sensitive to BDNF-dependent signaling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Bulbo Olfatório , Humanos , Camundongos , Masculino , Animais , Bulbo Olfatório/fisiologia , Camundongos Endogâmicos ICR , Reconhecimento Psicológico/fisiologia , Memória
3.
Exp Neurol ; 368: 114481, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463612

RESUMO

Early-life adversity, like perinatal protein malnutrition, increases the vulnerability to develop long-term alterations in brain structures and function. This study aimed to determine whether perinatal protein malnutrition predisposes to premature aging in a murine model and to assess the cellular and molecular mechanisms involved. To this end, mouse dams were fed either with a normal (NP, casein 20%) or a low-protein diet (LP, casein 8%) during gestation and lactation. Female offspring were evaluated at 2, 7 and 12 months of age. Positron emission tomography analysis showed alterations in the hippocampal CA3 region and the accessory olfactory bulb of LP mice during aging. Protein malnutrition impaired spatial memory, coinciding with higher levels of reactive oxygen species in the hippocampus and sirt7 upregulation. Protein malnutrition also led to higher senescence-associated ß-galactosidase activity and p21 expression. LP-12-month-old mice showed a higher number of newborn neurons that did not complete the maturation process. The social-odor discrimination in LP mice was impaired along life. In the olfactory bulb of LP mice, the senescence marker p21 was upregulated, coinciding with a downregulation of Sirt2 and Sirt7. Also, LP-12-month-old mice showed a downregulation of catalase and glutathione peroxidase, and LP-2-month-old mice showed a higher number of newborn neurons in the subventricular zone, which then returned to normal values. Our results show that perinatal protein malnutrition causes long-term impairment in cognitive and olfactory skills through an accelerated senescence phenotype accompanied by an increase in oxidative stress and altered sirtuin expression in the hippocampus and olfactory bulb.


Assuntos
Senilidade Prematura , Desnutrição , Gravidez , Camundongos , Animais , Feminino , Memória Espacial , Senilidade Prematura/genética , Caseínas/metabolismo , Estresse Oxidativo , Transtornos da Memória/etiologia , Bulbo Olfatório/fisiologia , Desnutrição/complicações , Desnutrição/metabolismo
4.
Elife ; 122023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806332

RESUMO

Gamma oscillations are believed to underlie cognitive processes by shaping the formation of transient neuronal partnerships on a millisecond scale. These oscillations are coupled to the phase of breathing cycles in several brain areas, possibly reflecting local computations driven by sensory inputs sampled at each breath. Here, we investigated the mechanisms and functions of gamma oscillations in the piriform (olfactory) cortex of awake mice to understand their dependence on breathing and how they relate to local spiking activity. Mechanistically, we find that respiration drives gamma oscillations in the piriform cortex, which correlate with local feedback inhibition and result from recurrent connections between local excitatory and inhibitory neuronal populations. Moreover, respiration-driven gamma oscillations are triggered by the activation of mitral/tufted cells in the olfactory bulb and are abolished during ketamine/xylazine anesthesia. Functionally, we demonstrate that they locally segregate neuronal assemblies through a winner-take-all computation leading to sparse odor coding during each breathing cycle. Our results shed new light on the mechanisms of gamma oscillations, bridging computation, cognition, and physiology.


The cerebral cortex is the most recently evolved region of the mammalian brain. There, millions of neurons can synchronize their activity to create brain waves, a series of electric rhythms associated with various cognitive functions. Gamma waves, for example, are thought to be linked to brain processes which require distributed networks of neurons to communicate and integrate information. These waves were first discovered in the 1940s by researchers investigating brain areas involved in olfaction, and they are thought to be important for detecting and recognizing smells. Yet, scientists still do not understand how these waves are generated or what role they play in sensing odors. To investigate these questions, González et al. used a battery of computational approaches to analyze a large dataset of brain activity from awake mice. This revealed that, in the cortical region dedicated to olfaction, gamma waves arose each time the animals completed a breathing cycle ­ that is, after they had sampled the air by breathing in. Each breath was followed by certain neurons relaying olfactory information to the cortex to activate complex cell networks; this included circuits of cells known as feedback interneurons, which can switch off weakly activated neurons, including ones that participated in activating them in the first place. The respiration-driven gamma waves derived from this 'feedback inhibition' mechanism. Further work then examined the role of the waves in olfaction. Smell identification relies on each odor activating a unique set of cortical neurons. The analyses showed that gamma waves acted to select and amplify the best set of neurons for representing the odor sensed during a sniff, and to quieten less relevant neurons. Loss of smell is associated with many conditions which affect the brain, such as Alzheimer's disease or COVID-19. By shedding light on the neuronal mechanisms that underpin olfaction, the work by González et al. could help to better understand how these impairments emerge, and how the brain processes other types of complex information.


Assuntos
Córtex Olfatório , Córtex Piriforme , Camundongos , Animais , Olfato/fisiologia , Bulbo Olfatório/fisiologia , Respiração , Odorantes
5.
Eur J Neurosci ; 55(5): 1141-1161, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35075698

RESUMO

The main olfactory bulb (MOB) is highly plastic and constantly reconfiguring its function and structure depending on sensory experience. Despite the extensive evidence of anatomical, functional and behavioural changes in the olfactory system induced by highly variable olfactory experiences, it is still unknown whether prolonged passive odour experience could reconfigure the MOB at its input and network activity levels and whether these changes impact innate olfaction. Here, by measuring odour-induced glomerular activation, MOB network activity and innate olfactory behaviours, we described a profound MOB reconfiguration induced by prolonged passive olfactory experience in adult animals that impacts MOB input integration at the glomerular layer including an increase in the activated glomerular area and signal intensity, which is combined with a refinement in the number of activated glomeruli and less-overlapped glomerular maps. We also found that prolonged passive olfactory experience dramatically changes MOB population activity in the presence and absence of odours, which is reflected as a decrease in slow oscillations (<12 Hz) and an increase in fast oscillations (>12 Hz). All these functional changes in awake and anaesthetized mice correlate with an increase in brain-derived neurotrophic factor (BDNF) and with improved innate olfactory responses such as habituation/dishabituation and innate preference/avoidance. Our study shows that prolonged passive olfactory experience in adult animals produces a dramatic reconfiguration of the MOB network, possibly driven by BDNF, that improves innate olfactory responses.


Assuntos
Bulbo Olfatório , Olfato , Animais , Fator Neurotrófico Derivado do Encéfalo , Camundongos , Odorantes , Bulbo Olfatório/fisiologia , Olfato/fisiologia
6.
Brain Res Bull ; 171: 56-66, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753208

RESUMO

Social memory (SM) is a key element in social cognition and it encompasses the neural representation of conspecifics, an essential information to guide behavior in a social context. Here we evaluate classical and cutting-edge studies on neurobiology of SM, using as a guiding principle behavioral tasks performed in adult rodents. Our review highlights the relevance of the hippocampus, especially the CA2 region, as a neural substrate for SM and suggest that neural ensembles in the olfactory bulb may also encode SM traces. Compared to other hippocampus-dependent memories, much remains to be done to describe the neurobiological foundations of SM. Nonetheless, we argue that special attention should be paid to neurogenesis. Finally, we pinpoint the remaining open question on whether the hippocampal adult neurogenesis acts through pattern separation to permit the discrimination of highly similar stimuli during behavior.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Neurogênese/fisiologia , Bulbo Olfatório/fisiologia , Comportamento Social , Animais
7.
Exp Neurol ; 340: 113653, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33607078

RESUMO

Olfactory dysfunction is commonly observed in patients with obstructive sleep apnea (OSA), which is related to chronic intermittent hypoxia (CIH). OSA patients exhibit alterations in discrimination, identification and odor detection threshold. These olfactory functions strongly rely on neuronal processing within the main olfactory bulb (MOB). However, a direct evaluation of the effects of controlled CIH on olfaction and MOB network activity has not been performed. Here, we used electrophysiological field recordings in vivo to evaluate the effects of 21-day-long CIH on MOB network activity and its response to odors. In addition, we assessed animals´ olfaction with the buried food and habituation/dishabituation tests. We found that mice exposed to CIH show alterations in MOB spontaneous activity in vivo, consisting of a reduction in beta and gamma frequency bands power along with an increase in the theta band power. Likewise, the MOB was less responsive to odor stimulation, since the proportional increase of the power of its population activity in response to four different odorants was smaller than the one observed in control animals. These CIH-induced MOB functional alterations correlate with a reduction in the ability to detect, habituate and discriminate olfactory stimuli. Our findings indicate that CIH generates alterations in the MOB neural network, which could be involved in the olfactory deterioration in patients with OSA.


Assuntos
Hipóxia/fisiopatologia , Odorantes , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Administração por Inalação , Animais , Doença Crônica , Hipóxia/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Learn Mem ; 27(12): 493-502, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199474

RESUMO

During the first ten postnatal days (P), infant rodents can learn olfactory preferences for novel odors if they are paired with thermo-tactile stimuli that mimic components of maternal care. After P10, the thermo-tactile pairing becomes ineffective for conditioning. The current explanation for this change in associative learning is the alteration in the norepinephrine (NE) inputs from the locus coeruleus (LC) to the olfactory bulb (OB) and the anterior piriform cortex (aPC). By combining patch-clamp electrophysiology and computational simulations, we showed in a recent work that a transitory high responsiveness of the OB-aPC circuit to the maternal odor is an alternative mechanism that could also explain early olfactory preference learning and its cessation after P10. That result relied solely on the maturational properties of the aPC pyramidal cells. However, the GABAergic system undergoes important changes during the same period. To address the importance of the maturation of the GABAergic system for early olfactory learning, we incorporated data from the GABA inputs, obtained from in vitro patch-clamp experiment in the aPC of rat pups aged P5-P7 reported here, to the model proposed in our previous publication. In the younger than P10 OB-aPC circuit with GABA synaptic input, the number of responsive aPC pyramidal cells to the conditioned maternal odor was amplified in 30% compared to the circuit without GABAergic input. When compared with the circuit with other younger than P10 OB-aPC circuit with adult GABAergic input profile, this amplification was 88%. Together, our results suggest that during the olfactory preference learning in younger than P10, the GABAergic synaptic input presumably acts by depolarizing the aPC pyramidal neurons in such a way that it leads to the amplification of the pyramidal neurons response to the conditioned maternal odor. Furthermore, our results suggest that during this developmental period, the aPC pyramidal cells themselves seem to resolve the apparent lack of GABAergic synaptic inhibition by a strong firing adaptation in response to increased depolarizing inputs.


Assuntos
Aprendizagem/fisiologia , Odorantes , Condutos Olfatórios/crescimento & desenvolvimento , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Córtex Piriforme/crescimento & desenvolvimento , Córtex Piriforme/fisiologia , Ácido gama-Aminobutírico/fisiologia , Envelhecimento/psicologia , Animais , Animais Recém-Nascidos , Feminino , Masculino , Modelos Neurológicos , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia , Córtex Olfatório , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Ratos , Sinapses/fisiologia
9.
J Anat ; 236(4): 612-621, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797375

RESUMO

In mammals, the accessory olfactory or vomeronasal system exhibits a wide variety of anatomical arrangements. In caviomorph rodents, the accessory olfactory bulb (AOB) exhibits a dichotomic conformation, in which two subdomains, the anterior (aAOB) and the posterior (pAOB), can be readily distinguished. Interestingly, different species of this group exhibit bias of different sign between the AOB subdomains (aAOB larger than pAOB or vice versa). Such species-specific biases have been related with contrasting differences in the habitat of the different species (e.g. arid vs. humid environments). Aiming to deepen these observations, we performed a morphometric comparison of the AOB subdomains between two sister species of octodontid rodents, Octodon lunatus and Octodon degus. These species are interesting for comparative purposes, as they inhabit similar landscapes but exhibit contrasting social habits. Previous reports have shown that O. degus, a highly social species, exhibits a greatly asymmetric AOB, in which the aAOB has twice the size of the pAOB and features more and larger glomeruli in its glomerular layer (GL). We found that the same as in O. degus, the far less social O. lunatus also exhibits a bias, albeit less pronounced, to a larger aAOB. In both species, this bias was also evident for the mitral/tufted cells number. But unlike in O. degus, in O. lunatus this bias was not present at the GL. In comparison with O. degus, in O. lunatus the aAOB GL was significantly reduced in volume, while the pAOB GL displayed a similar volume. We conclude that these sister species exhibit a very sharp difference in the anatomical conformation of the AOB, namely, the relative size of the GL of the aAOB subdomain, which is larger in O. degus than in O. lunatus. We discuss these results in the context of the differences in the lifestyle of these species, highlighting the differences in social behaviour as a possible factor driving to distinct AOB morphometries.


Assuntos
Comportamento Animal/fisiologia , Lateralidade Funcional/fisiologia , Bulbo Olfatório/anatomia & histologia , Comportamento Social , Animais , Octodon , Bulbo Olfatório/fisiologia
10.
Brain Res ; 1724: 146439, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31499018

RESUMO

Parkinson's disease is characterized by motor symptoms (akinesia, rigidity, etc.), which are associated with the degeneration of the dopaminergic neurons of the midbrain. In addition, olfactory impairment that usually develops before the detection of motor deficits, is detected in 90% of Parkinsonian patients. Recent studies in mammals, have shown that slow cortical potentials phase-lock with nasal respiration. In several cortical areas, gamma synchronization of the electrographic activity is also coupled to respiration, suggesting than nasal respiratory entrainment could have a role in the processing of olfactory information. In the present study, we evaluate the role of midbrain dopaminergic neurons, in the modulation of the electrocorticogram activity and its respiratory entrainment during wakefulness and sleep. For this purpose, we performed a unilateral lesion of dopaminergic neurons of the substantia nigra pars compacta of the rat, with 6-hydroxydopamine. An increase in beta (20-35 Hz) together with a decrease in gamma power (60-95 Hz) in the motor cortex ipsilateral to the lesion was observed during wakefulness. These results correlated with the degree of motor alterations and dopamine measured at the striatum. Moreover, we found a decline in gamma coherence between the ipsilateral olfactory bulb and motor cortex. Also, at the olfactory bulb we noticed an increase in respiratory-gamma cross-frequency coupling after the lesion, while at the motor cortex, a decrease in respiratory potential entrainment of gamma activity was observed. Interestingly, we did not observe any significant modification either during Non-REM or REM sleep. These waking dysrhythmias may play a role both in the anosmia and motor deficits present in Parkinson disease.


Assuntos
Doença de Parkinson/patologia , Respiração/efeitos dos fármacos , Sono/fisiologia , Animais , Corpo Estriado/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Masculino , Córtex Motor/patologia , Bulbo Olfatório/fisiologia , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/patologia , Ratos , Ratos Wistar , Sono REM/fisiologia , Substância Negra/patologia , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA