Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Braz. J. Pharm. Sci. (Online) ; 58: e18674, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1374556

RESUMO

Abstract Fluoride anions are indispensable trace elements required for sustaining life. To investigate the homeostasis and action of fluoride in the body, a new highly sensitive and selective fluorescence detection method was designed for fluoride in aqueous solutions. A fluorescent probe for fluoride (FP-F) was synthesized for imaging F- in living cells. The design strategy for the probe was based on the specific reaction between fluoride and silica to mediate deprotection of this probe to fluorescein. Upon treatment with F-, FP-F, a closed and weakly fluorescent lactone, was transformed into an open and strongly fluorescent product. Under the optimum conditions, the detection limit for fluoride was 0.526 nM. FP-F could detect micromolar changes in F- concentrations in living cells by confocal microscopy.


Assuntos
Fluoresceína/farmacologia , Fluorescência , Flúor/análise , Oligoelementos/efeitos adversos , Células/metabolismo , Microscopia Confocal/métodos , Diagnóstico , Corantes Fluorescentes/farmacologia , Homeostase , Métodos
2.
Braz. J. Pharm. Sci. (Online) ; 58: e19194, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383971

RESUMO

Abstract Increasing biological activity and phytochemical investigations on Eryngium species showed its potential as pharmaceutical approach. Eryngium kotschyi Boiss. is one of the species of Eryngium genus and is endemic to Turkey. It is known that this plant is traditionally used in the South-western part of Turkey for the treatment of various diseases. This study focuses on cytotoxic activities of methanol extract and ethyl acetate, n-butanol and water sub-extracts from E. kotschyi in A549, COLO 205 and MDA-MB-231 cell lines by Sulforhodamin B assay and qualitative and quantitative determination of phytochemical constituents in active extract by LC-MS/MS. From the result of the study, it was seen that E. kotschyi ethyl acetate (EKE) sub-extract showed the strongest cytotoxic effect with the low IC50 values (50.00; 31.96 and 22.26 µg/mL in A549; COLO 205 and MDA-MB-231 cells at 48 h, respectively). Preliminary examination of the mass spectrums revealed the presence of 15 phytochemical compounds in active sub-extract and 7 of them was quantified. According to quantitative analyses the main compounds of EKE sub-extract were rosmarinic acid (485.603 µg/mgextract), chlorogenic acid (62.355 µg/mgextract) and caffeic acid (59.266 µg/mgextract). Moreover, this preliminary study on inhibitory activity of EKE sub-extract suggests further toxicologic investigations and detailed investigation on cytotoxic effect of various combinations of determined compounds


Assuntos
Turquia/etnologia , Células/metabolismo , Eryngium/anatomia & histologia , Compostos Fitoquímicos/efeitos adversos , Preparações Farmacêuticas/administração & dosagem , Linhagem Celular/classificação , Células A549/metabolismo , Acetatos/administração & dosagem
3.
Rev. medica electron ; 42(4): 2049-2065,
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1139295

RESUMO

RESUMEN Las células de la cresta neural son pluripotenciales y son llamadas la cuarta hoja germinativa del embrión. Con el objetivo de estructurar los referentes teóricos actualizados que sustenten la afirmación precedente y que constituirá material de estudio para los estudiantes de las Ciencias Médicas, se realizó la revisión de 28 referencias bibliográficas, de ellas 89% actualizadas. Estas células aparecen durante la neurulación y pasado este proceso transitan de epitelial a mesenquimatosa; migran siguiendo señales de la matriz extracelular a todo el cuerpo del embrión diferenciándose en tejidos disimiles. Muy vinculados en su evolución a mecanismos epigenéticos, hacen a esta población celular vulnerables a ser dañadas invocándose en la etiología de diferentes defectos congénitos y enfermedades crónicas no trasmisibles como cáncer. Como conclusión por su pluripotencialidad y por los mecanismos moleculares que distinguen su evolución son consideradas por muchos autores la cuarta hoja germinativa del embrión (AU).


SUMMARY Neural crest cells are pluripotentials, and are called the fourth germinative leaf of the embryo. With the objective of structuring the updated theoretical referents backing up the precedent affirmation that will be study material for the students of Medical Sciences, the authors reviewed 28 bibliographic references, 89 % of them updated. These cells appear during neurulation and after this process they transit from epithelial to mesenchymal; following extracellular matrix signals, they migrate to the whole embryo body differentiating themselves in dissimilar tissues. Tightly related in their evolution to epigenetic mechanisms, this cell population is very likely to be damaged and so they are invoked in the etiology of different congenital defects and noncommunicable chronic diseases like cancer. In conclusion, due to their pluripotentiality and the molecular mechanisms distinguishing their evolution, many authors consider them the embryo´s fourth germinative leaf (AU).


Assuntos
Humanos , Masculino , Feminino , Células/metabolismo , Crista Neural/patologia , Estudantes de Medicina , Vertebrados/genética , Neurulação/fisiologia , Crista Neural/anormalidades , Crista Neural/fisiologia , Crista Neural/fisiopatologia
4.
J Agric Food Chem ; 66(28): 7531-7541, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29984997

RESUMO

Citrus polymethoxylated flavones (PMFs) influence biochemical cascades in human diseases, yet little is known about how these compounds interact with cells and how these associations influence the actions of these compounds. An innate attribute of PMFs is their ultraviolet-light-induced fluorescence, and the fluorescence spectra of 14 PMFs and 7 PMF metabolites were measured in methanol. These spectra were shown to be strongly influenced by the compounds' hydroxy and methoxy substituents. For a subset of these compounds, the fluorescence spectra were measured when bound to human carcinoma Huh7.5 cells. Emission-wavelength maxima of PMF metabolites with free hydroxyl substituents exhibited 70-80 nm red shifts when bound to the Huh7.5 cells. Notable solvent effects of water were observed for nearly all these compounds, and these influences likely reflect the effects of localized microenvironments on the resonance structures of these compounds when bound to human cells.


Assuntos
Células/metabolismo , Citrus/química , Flavonas/química , Extratos Vegetais/química , Animais , Linhagem Celular , Células/química , Citrus/metabolismo , Flavonas/metabolismo , Fluorescência , Humanos , Masculino , Espectrometria de Massas , Extratos Vegetais/metabolismo , Ratos , Ratos Wistar , Espectrometria de Fluorescência
5.
Coluna/Columna ; 17(3): 237-239, July-Sept. 2018.
Artigo em Inglês | LILACS | ID: biblio-952933

RESUMO

ABSTRACT The intervertebral disc (IVD) is one of the parts of the body most commonly affected by disease, and it is only recently that we have come closer to understanding the reasons for its degeneration, in which nutrient supply plays a crucial role. In this literature review, we discuss the basic principles and characteristics of energy supply and demand to the IVD. Specifically, we review how different metabolites influence IVD cell activity, the effects of mechanical loading on IVD cell metabolism, and differences in energy metabolism of the annulus fibrous and nucleus pulposus cell phenotypes. Determining the factors that influence nutrient supply and demand in the IVD will enhance our understanding of the IVD pathology, and help to elucidate new therapeutic targets for IVD degeneration treatment.


RESUMO O disco intervertebral (IVD) é uma das partes mais comuns do corpo e apenas recentemente nos aproximamos de compreender as razões da sua degeneração, em que o suprimento de nutrientes desempenha um papel crucial. Nesta revisão da literatura, discutimos os princípios básicos e as nuances do fornecimento e da demanda de energia para o IVD. Específicamente, analisamos como os diferentes metabólitos influenciam na atividade das células IVD, os efeitos da carga mecânica no metabolismo das células IVD, a diferença no metabolismo energético dos fenótipos das células fibrosas e do núcleo do pulposus anelar. A determinação de fatores que influenciam o suprimento e a demanda de nutrientes no IVD aumentará nossa compreensão da patologia IVD e ajudará a elucidar novos alvos terapêuticos para o tratamento da degeneração IVD.


RESUMEN El disco intervertebral (IVD, por sus siglas en inglés) es una de las partes más comúnmente enfermas del cuerpo y solo recientemente nos acercamos a la comprensión de los motivos de su degeneración, de los cuales el suministro de nutrientes juega un papel crucial. En esta revisión de la literatura discutimos los principios básicos y los matices de la oferta y demanda de energía para el IVD. Específicamente, revisamos cómo los diferentes metabolitos influyen en la actividad de las células IVD, los efectos de la carga mecánica sobre el metabolismo de las células IVD y las diferencias en el metabolismo energético de los fenotipos de las células del anillo fibroso y el núcleo pulposo. La determinación de los factores que influyen en la oferta y demanda de nutrientes en el IVD mejorará nuestra comprensión de la patología IVD y ayudará a dilucidar nuevos objetivos terapéuticos para el tratamiento de la degeneración IVD.


Assuntos
Humanos , Disco Intervertebral/patologia , Células/metabolismo , Metabolismo Energético , Disco Intervertebral/anatomia & histologia , Disco Intervertebral/anormalidades
6.
Biochimie ; 147: 89-97, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29366935

RESUMO

For many years, glycine betaine (GB) has been widely studied as an osmolyte in plants and bacteria. In animal cells, GB is an osmolyte mainly in the kidneys, but in humans many studies have shown its role as a methyl donor in homocysteine metabolism in the liver. GB is also a protein stabilizer, and thus, it became known as an osmoprotector. In many organisms GB is synthesized from choline and can also be obtained from some foods. Over the last twenty years GB has gone from being considered simply as an osmolyte to being known as a cytoprotector involved in cell metabolism and as a chemical chaperone. The aim of this review was to gather information about the role of GB in the metabolism of ethanol, lipids, carbohydrates and proteins in animals. The information generated thus far shows that GB regulates enzymes involved in the homocysteine/methionine cycle, sucrose, glucose, fructose and glycogen metabolism, in oxidative and ER-stress caused by ethanol abuse, likewise enzymes involved in lipogenesis and fatty oxidation. Besides, there are data supporting that GB regulates the transcription factors PPARα, NF-κB, FOX1, ChREBP and SREBP1 and this lets GB play a role in protein synthesis. One of the main mechanisms by which GB regulates the enzymes is by changes in their activity either because GB increases their expression or because it regulates changes in their phosphorylation status through specific kinases. GB modulates the expression of genes by changing the degree of methylation in the promoter of target genes. The exact mechanism by which GB modifies the methylation status of the promoter is not yet clear, but methyl transferases that use SAM as methyl donor and DNA methyl transferases are good candidates for this function.


Assuntos
Betaína/metabolismo , Células/metabolismo , Osmose , Animais , Humanos
7.
BMC Bioinformatics ; 18(Suppl 10): 395, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28929969

RESUMO

BACKGROUND: The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. RESULTS: Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CONCLUSIONS: CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.


Assuntos
Células/metabolismo , Internet , Redes e Vias Metabólicas , Software , Algoritmos , Bases de Dados Factuais , Ontologia Genética , Humanos , Sistema de Sinalização das MAP Quinases , Interface Usuário-Computador
9.
Prog Biophys Mol Biol ; 121(1): 16-28, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26975790

RESUMO

Efforts to elucidate the doubtful character of the static magnetic field (SMF) influence on living cells have been made, although the topic still faces controversies because confusing reports in the scientific literature. This study intended to collect the most relevant issues separated by different topics (relating the SMF to its action on cellular systems) and analyze how the many field intensities, cell types and exposure time would affect the cell or intracellular structures. The analysis was based in the search in online databases aiming to give a general view of how the data can show conformity. It is proposed that scientists have been searching for linearity in what is actually a well characterized nonlinear system and two outputs are considered: the high sensitivity of parameters in which specific cell responses are generated and also the complexity and particularity of each cellular system. It is possible to trigger effects from a SMF, however in a stochastic way and depending on the cell system.


Assuntos
Células , Campos Magnéticos , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Células/citologia , Células/metabolismo , Regulação da Expressão Gênica , Humanos , Espaço Intracelular/metabolismo
10.
J Genet Genomics ; 42(5): 195-205, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26059768

RESUMO

The importance of pyrimidines lies in the fact that they are structural components of a broad spectrum of key molecules that participate in diverse cellular functions, such as synthesis of DNA, RNA, lipids, and carbohydrates. Pyrimidine metabolism encompasses all enzymes involved in the synthesis, degradation, salvage, interconversion and transport of these molecules. In this review, we summarize recent publications that document how pyrimidine metabolism changes under a variety of conditions, including, when possible, those studies based on techniques of genomics, transcriptomics, proteomics, and metabolomics. First, we briefly look at the dynamics of pyrimidine metabolism during nonpathogenic cellular events. We then focus on changes that pathogen infections cause in the pyrimidine metabolism of their host. Next, we discuss the effects of antimetabolites and inhibitors, and finally we consider the consequences of genetic manipulations, such as knock-downs, knock-outs, and knock-ins, of pyrimidine enzymes on pyrimidine metabolism in the cell.


Assuntos
Células/metabolismo , Pirimidinas/metabolismo , Animais , Células/citologia , Células/patologia , Biologia Computacional , Humanos , Infecções/metabolismo , Infecções/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA