Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Exp Brain Res ; 240(5): 1617-1627, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35362723

RESUMO

Oligodendrocyte loss and myelin sheet destruction are crucial characteristics of demyelinating diseases. Phenytoin promotes the proliferation of endogenous neural precursor cells in the ventricular-subventricular zone in the postnatal brain that help restore the oligodendroglial population. This study aimed to evaluate whether phenytoin promotes myelin recovery of the corpus callosum of demyelinated adult mice. CD1 male mice were exposed to a demyelinating agent (0.2% cuprizone) for 8 weeks. We assembled two groups: the phenytoin-treated group and the control-vehicle group. The treated group received oral phenytoin (10 mg/kg) for 4 weeks. We quantified the number of Olig2 + and NG2 + oligodendrocyte precursor cells (OPCs), Rip + oligodendrocytes, the expression level of myelin basic protein (MBP), and the muscle strength and motor coordination. The oligodendroglial lineage (Olig2 + cells, NG2 + cells, and RIP + cells) significantly increases by the phenytoin administration when compared to the control-vehicle group. The phenytoin-treated group also showed an increased expression of MBP in the corpus callosum and better functional scores in the horizontal bar test. These findings suggest that phenytoin stimulates the proliferation of OPCs, re-establishes the oligodendroglial population, promotes myelin recovery in the corpus callosum, and improves motor coordination and muscle strength.


Assuntos
Cuprizona , Células-Tronco Neurais , Animais , Diferenciação Celular , Proliferação de Células , Corpo Caloso , Cuprizona/metabolismo , Cuprizona/toxicidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células-Tronco Neurais/fisiologia , Oligodendroglia/metabolismo , Fenitoína/metabolismo , Fenitoína/farmacologia
2.
Biochim Biophys Acta Proteins Proteom ; 1869(8): 140656, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33857633

RESUMO

Axon guidance is required for the establishment of brain circuits. Whether much of the molecular basis of axon guidance is known from animal models, the molecular machinery coordinating axon growth and pathfinding in humans remains to be elucidated. The use of induced pluripotent stem cells (iPSC) from human donors has revolutionized in vitro studies of the human brain. iPSC can be differentiated into neuronal stem cells which can be used to generate neural tissue-like cultures, known as neurospheres, that reproduce, in many aspects, the cell types and molecules present in the brain. Here, we analyzed quantitative changes in the proteome of neurospheres during differentiation. Relative quantification was performed at early time points during differentiation using iTRAQ-based labeling and LC-MS/MS analysis. We identified 6438 proteins, from which 433 were downregulated and 479 were upregulated during differentiation. We show that human neurospheres have a molecular profile that correlates to the fetal brain. During differentiation, upregulated pathways are related to neuronal development and differentiation, cell adhesion, and axonal guidance whereas cell proliferation pathways were downregulated. We developed a functional assay to check for neurite outgrowth in neurospheres and confirmed that neurite outgrowth potential is increased after 10 days of differentiation and is enhanced by increasing cyclic AMP levels. The proteins identified here represent a resource to monitor neurosphere differentiation and coupled to the neurite outgrowth assay can be used to functionally explore neurological disorders using human neurospheres as a model.


Assuntos
Axônios/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Axônios/patologia , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Cromatografia Líquida/métodos , Humanos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
3.
Exp Neurol ; 340: 113643, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631199

RESUMO

Brain damage during early life is the main factor in the development of cerebral palsy (CP), which is one of the leading neurodevelopmental disorders in childhood. Few studies, however, have focused on the mechanisms of cell proliferation, migration, and differentiation in the brain of individuals with CP. We thus conducted a systematic review of preclinical evidence of structural neurogenesis in early brain damage and the underlying mechanisms involved in the pathogenesis of CP. Studies were obtained from Embase, Pubmed, Scopus, and Web of Science. After screening 2329 studies, 29 studies, covering a total of 751 animals, were included. Prenatal models based on oxygen deprivation, inflammatory response and infection, postnatal models based on oxygen deprivation or hypoxic-ischemia, and intraventricular hemorrhage models showed varying neurogenesis responses according to the nature of the brain damage, the time period during which the brain injury occurred, proliferative capacity, pattern of migration, and differentiation profile in neurogenic niches. Results mainly from rodent studies suggest that prenatal brain damage impacts neurogenesis and curbs generation of neural stem cells, while postnatal models show increased proliferation of neural precursor cells, improper migration, and reduced survival of new neurons.


Assuntos
Lesões Encefálicas/patologia , Paralisia Cerebral/patologia , Modelos Animais de Doenças , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Animais , Biomarcadores/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Movimento Celular/fisiologia , Paralisia Cerebral/metabolismo , Paralisia Cerebral/fisiopatologia , Humanos
4.
J Neurochem ; 156(2): 182-199, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936929

RESUMO

In the adult hypothalamus, the neuronal precursor role is attributed to the radial glia-like cells that line the third-ventricle (3V) wall called tanycytes. Under nutritional cues, including hypercaloric diets, tanycytes proliferate and differentiate into mature neurons that moderate body weight, suggesting that hypothalamic neurogenesis is an adaptive mechanism in response to metabolic changes. Previous studies have shown that the tanycyte glucosensing mechanism depends on connexin-43 hemichannels (Cx43 HCs), purine release, and increased intracellular free calcium ion concentration [(Ca2+ )i ] mediated by purinergic P2Y receptors. Since, Fibroblast Growth Factor 2 (FGF2) causes similar purinergic events in other cell types, we hypothesize that this pathway can be also activated by FGF2 in tanycytes to promote their proliferation. Here, we used bromodeoxyuridine (BrdU) incorporation to evaluate if FGF2-induced tanycyte cell division is sensitive to Cx43 HC inhibition in vitro and in vivo. Immunocytochemical analyses showed that cultured tanycytes maintain the expression of in situ markers. After FGF2 exposure, tanycytic Cx43 HCs opened, enabling release of ATP to the extracellular milieu. Moreover, application of external ATP was enough to induce their cell division, which could be suppressed by Cx43 HC or P2Y1-receptor inhibitors. Similarly, in vivo experiments performed on rats by continuous infusion of FGF2 and a Cx43 HC inhibitor into the 3V, demonstrated that FGF2-induced ß-tanycyte proliferation is sensitive to Cx43 HC blockade. Thus, FGF2 induced Cx43 HC opening, triggered purinergic signaling, and increased ß-tanycytes proliferation, highlighting some of the molecular mechanisms involved in the cell division response of tanycyte. This article has an Editorial Highlight see https://doi.org/10.1111/jnc.15218.


Assuntos
Conexina 43/metabolismo , Células Ependimogliais/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Canais Iônicos/metabolismo , Neurogênese/fisiologia , Animais , Proliferação de Células/fisiologia , Masculino , Células-Tronco Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
5.
Neural Plast ; 2020: 8869669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029122

RESUMO

Microtus ochrogaster is a rodent with a monogamous reproductive strategy characterized by strong pair bond formation after 6 h of mating. Here, we determine whether mating-induced pair bonding increases cell proliferation in the subventricular zone (SVZ), rostral migratory stream (RMS), and dentate gyrus (DG) of the hippocampus in male voles. Males were assigned to one of the four groups: (1) control: males were placed alone in a clean cage; (2) social exposure to a female (SE m/f): males that could see, hear, and smell a sexually receptive female but where physical contact was not possible, because the animals were separated by an acrylic screen with small holes; (3) social exposure to a male (SE m/m): same as group 2 but males were exposed to another male without physical contact; and (4) social cohabitation with mating (SCM): males that mated freely with a receptive female for 6 h. This procedure leads to pair bond formation. Groups 2 and 3 were controls for social interaction. Male prairie voles were injected with 5-bromo-2'-deoxyuridine (BrdU) during the behavioral tests and were sacrificed 48 h later. Brains were processed to identify the new cells (BrdU-positive) and neuron precursor cells (neuroblasts). Our principal findings are that in the dorsal region of the SVZ, SCM and SE m/f and m/m increase the percentage of neuron precursor cells. In the anterior region of the RMS, SE m/f decreases the percentage of neuron precursor cells, and in the medial region SE m/f and m/m decrease the number of new cells and neuron precursor cells. In the infrapyramidal blade of the subgranular zone of the DG, SE m/m and SCM increase the number of new neuron precursor cells and SE m/m increases the percentage of these neurons. Our data suggests that social interaction, as well as sexual stimulation, leads to pair bonding in male voles modulating cell proliferation and differentiation to neuronal precursor cells at the SVZ, RMS, and DG.


Assuntos
Proliferação de Células , Hipocampo/fisiologia , Ventrículos Laterais/fisiologia , Neurogênese , Ligação do Par , Comportamento Social , Animais , Arvicolinae , Feminino , Masculino , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia
6.
J Mol Histol ; 51(4): 437-453, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32653982

RESUMO

The hilus plays an important role modulating the excitability of the hippocampal dentate gyrus (DG). It also harbors proliferative cells whose proliferation rate is modified during pathological events. However, the characterization of these cells, in terms of cellular identity, lineage, and fate, as well as the morphology and proportion of each cell subpopulation has been poorly studied. Therefore, a deeper investigation of hilar proliferative cells might expand the knowledge not only in the physiology, but in the pathophysiological processes related to the hippocampus too. The aim of this work was to perform an integrative study characterizing the identity of proliferative cells populations harbored in the hilus, along with morphology and proportion. In addition, this study provides comparative evidence of the subgranular zone (SGZ) of the DG. Quantified cells included proliferative, neural precursor, Type 1, oligodendrocyte progenitor (OPCs), neural progenitor (NPCs), and proliferative mature astrocytes in the hilus and SGZ of Wistar adult rats. Our results showed that 84% of the hilar proliferative cells correspond to neural precursor cells, OPCs and NPCs being the most abundant at 54 and 45%, respectively, unlike the SGZ, where OPCs represent only 11%. Proliferative mature astrocytes and Type 1-like cells were rarely observed in the hilus. Together, our results lay the basis for future studies focused on the lineage and fate of hilar proliferative cells and suggest that the hilus could be relevant to the formation of new cells that modulate multiple physiological processes governed by the hippocampus.


Assuntos
Proliferação de Células/fisiologia , Giro Denteado/fisiologia , Animais , Astrócitos/fisiologia , Contagem de Células/métodos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Células-Tronco/fisiologia
7.
Clin Transl Oncol ; 21(11): 1551-1560, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30945128

RESUMO

PURPOSE: Neural stem cells (NSCs) have been characterized with the ability of self-renewal and neurogenesis, which has inspired lots of studies to clarify the functions of NSCs in neural injury, ischemic stroke, brain inflammation and neurodegenerative diseases. We focused on the relationship of NSCs with glioblastoma, since we have discovered that recurrent glioblastomas were inclined to be derived from subventricular zone (SVZ), where NSCs reside. We want to clarify whether NSCs are involved in glioblastoma relapse. METHODS: Immunocytochemistry was used to confirm the stemness of NSCs. The Cell Counting Kit-8 was used to measure the proliferation of cells. Migration abilities were examined by wound healing and transwell assays, and tumor formation abilities were confirmed in nude mice. RESULTS: We found in experiments that NSCs promoted proliferation of a glioblastoma cell line-Ln229, the migration ability of Ln229 cells was motivated by co-cultured with NSCs. Tumor formation of Ln229 cells was also accelerated in nude mice when co-transplanted with NSCs. In immunohistochemistry, we found that the Sox2- and Ki67-positive cells were much higher in co-transplanted groups than that of control groups. CONCLUSIONS: These results imply the potential role that NSCs play in speeding up tumor formation in the process of glioblastoma relapse, providing the basis for dealing with newly diagnosed glioblastoma patients, which may help postpone the recurrence of glioblastoma as far as possible through preprocessing the tumor-adjacent SVZ tissue.


Assuntos
Movimento Celular , Proliferação de Células , Glioblastoma/etiologia , Células-Tronco Neurais/fisiologia , Animais , Linhagem Celular Tumoral , Glioblastoma/química , Antígeno Ki-67/análise , Ventrículos Laterais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neurais/química , Fatores de Transcrição SOXB1/análise , Cicatrização
8.
PLoS One ; 14(1): e0210207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629659

RESUMO

The process of neuronal differentiation is associated with neurite elongation and membrane biogenesis, and phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells. During neuroblast differentiation, the transcription of two genes involved in PtdCho biosynthesis are stimulated: Chka gene for choline kinase (CK) alpha isoform and Pcyt1a gene for CTP:phosphocholine cytidylyltransferase (CCT) alpha isoform. Here we show that CKα is essential for neuronal differentiation. In addition, we demonstrated that KDM2B regulates CKα expression and, as a consequence, neuronal differentiation. This factor is up-regulated in the course of the neuroblasts proliferative and undifferentiated state and down-regulated during differentiation induced by retinoic acid (RA). During proliferation, KDM2B binds to the Box2 located in the Chka promoter repressing its transcription. Interestingly, KDM2B knockdown enhances the levels of CKα expression in neuroblast cells and induces neuronal differentiation even in the absence of RA. These results suggest that KDM2B is required for the appropriate regulation of CKα during neuronal differentiation and to the maintaining of the undifferentiated stage of neuroblast cells.


Assuntos
Colina Quinase/genética , Proteínas F-Box/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neuroblastoma/genética , Tretinoína/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Colina Quinase/metabolismo , Epigênese Genética , Proteínas F-Box/genética , Seguimentos , Técnicas de Silenciamento de Genes , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Células-Tronco Neurais/fisiologia , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima
9.
Mol Biol Rep ; 46(1): 191-198, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30421128

RESUMO

Cell transplantation offers a promising approach in many neurological disorders. Neural stem (NS) cells are potential candidates for cell therapy. The ability to track the grafted cells in the host tissue will refine this therapy. Superparamagnetic iron oxide nanoparticles (SPION) have been suggested as a feasible method, but there is no consensus about its safety. Here we investigated the feasibility of label NS cells with SPION and track by MRI after transplantation into mouse striatum with SPION cells and its therapeutic effects by grafting the cells into mouse striatum. We demonstrated that SPION-labeled NS cells display normal patterns of cellular processes including proliferation, migration, differentiation and neurosphere formation. Transmission electron microscopy reveals SPION in the cytoplasm of the cells, which was confirmed by microanalysis. Neurons and astrocytes generated from SPION-labeled NS cells were able to carry nanoparticles after 7 days under differentiation. SPION-labeled NS cells transplanted into striatum of mice were detected by magnetic resonance imaging (MRI) and microscopy 51 days later. In agreement with others reports, we demonstrated that NS cells are able to incorporate SPION in vitro without altering the stemness, and can survive and be tracked by MRI after they have been grafted into mice striatum.


Assuntos
Rastreamento de Células/métodos , Nanopartículas de Magnetita/química , Células-Tronco Neurais/fisiologia , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Compostos Férricos/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Células-Tronco Neurais/citologia , Neurônios/fisiologia
10.
J Gerontol A Biol Sci Med Sci ; 74(7): 1043-1051, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29300914

RESUMO

Klotho is an aging-related protein associated with hippocampal cognitive performance in mammals. Klotho regulates progenitor cell proliferation in non-neuronal tissues, but its role in adult hippocampal neurogenesis (AHN) has not been explored. Klotho expression in the adult mouse hippocampus was examined by immunofluorescence and polymerase chain reaction. AHN was evaluated in the hippocampus of klotho knock-out mice (KO), klotho KO/vitamin D-receptor mutant mice, and in a model of local klotho hippocampal knockdown. The recombinant Klotho effect on proliferation was measured in mouse-derived hippocampal neural progenitor cells. Hippocampal-dependent memory was assessed by a dry-land version of the Morris water maze. Klotho was expressed in the granular cell layer of the adult Dentate Gyrus. AHN was increased in klotho KO mice, but not in klotho KO/vitamin D-receptor mutant mice. Inversely, local downregulation of hippocampal Klotho diminished AHN. Recombinant Klotho increased the proliferation rate of neural progenitors. Downregulation of hippocampal Klotho correlated with a decreased performance in hippocampal-dependent memory. These results suggest that Klotho directly participates in regulating AHN. Our observations indicate that Klotho promotes proliferation, AHN and hippocampal-dependent cognition. Increased neurogenesis in klotho KO mice may be secondary to the activation of other pathways altered in the model, such as vitamin D.


Assuntos
Proliferação de Células/fisiologia , Giro Denteado , Glucuronidase/metabolismo , Memória/fisiologia , Neurogênese/fisiologia , Animais , Comportamento Animal/fisiologia , Cognição/fisiologia , Giro Denteado/diagnóstico por imagem , Giro Denteado/metabolismo , Imunofluorescência/métodos , Proteínas Klotho , Aprendizagem em Labirinto , Camundongos , Células-Tronco Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA