Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Biodivers ; 19(10): e202200411, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36085355

RESUMO

There is growing interest in exploring Digitalis cardenolides as potential antiviral agents. Hence, we herein investigated the influence of structural features and lipophilicity on the antiherpes activity of 65 natural and semisynthetic cardenolides assayed in vitro against HSV-1. The presence of an α,ß-unsaturated lactone ring at C-17, a ß-hydroxy group at C-14 and C-3ß-OR substituents were considered essential requirements for this biological activity. Glycosides were more active than their genins, especially monoglycosides containing a rhamnose residue. The activity enhanced in derivatives bearing an aldehyde group at C-19 instead of a methyl group, whereas inserting a C-5ß-OH improved the antiherpes effect significantly. The cardenolides lipophilicity was accessed by measuring experimentally their log P values (n-octanol-water partition coefficient) and disclosed a range of lipophilicity (log P 0.75±0.25) associated with the optimal antiherpes activity. In silico studies were carried out and resulted in the establishment of two predictive models potentially useful to identify and/or optimize novel antiherpes cardenolides. The effectiveness of the models was confirmed by retrospective analysis of the studied compounds. This is the first SAR study addressing the antiherpes activity of cardenolides. The developed computational models were able to predict the active cardenolides and their log P values.


Assuntos
Digitalis , Digitalis/química , Cardenolídeos/farmacologia , 1-Octanol , Ramnose , Estudos Retrospectivos , Extratos Vegetais/química , Antivirais/farmacologia , Glicosídeos , Lactonas , Aldeídos , Água
2.
Toxicon ; 216: 15-27, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772506

RESUMO

Oleandrin, a cardiac glycoside isolated from the leaves of Nerium oleander, has known effects on the heart. Evidence from recent studies have highlighted its potential for anticancer properties. Therefore, we aimed to investigate the effects of oleandrin on cancer cell proliferation, viability and apoptosis in vitro and in vivo. We performed a systematic search in six electronic databases up to Jan 2022. We extracted information about the effects of oleandrin on cell proliferation, cell viability, apoptosis and/or cell cycle arrest in in vitro studies, and the effects on tumor size and volume in animal experimental models. We have retrieved 775 scientific studies. 14 studies met the inclusion criteria. They investigated the effects of oleandrin on breast, lung, pancreatic, colon, prostate, colorectal, oral, ovarian, glioma, melanoma, glioblastoma, osteosarcoma, and histiocytic lymphoma cancers. Overall, in vitro studies demonstrated that oleandrin was able to inhibit cell proliferation, decrease cell viability, and induce apoptosis and/or cell cycle arrest. In addition, oleandrin had an effect on reducing mean tumor size and volume in animal studies. Oleandrin, as a cytotoxic agent, demonstrated antitumor effects in different types of cancers, however important clinical limitations remain a concern. These results encourage future studies to verify the applicability of oleandrin in antineoplastic therapeutic protocols human and veterinary medicine, the investigation of antimetastatic properties, as well as the potential increase in patient survival and the decrease of tumor markers.


Assuntos
Glicosídeos Cardíacos , Glioma , Animais , Cardenolídeos/farmacologia , Glicosídeos Cardíacos/farmacologia , Proliferação de Células , Glioma/tratamento farmacológico , Humanos , Masculino
3.
F1000Res ; 11: 527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37025948

RESUMO

Background: Several studies have shown that active compounds of Asclepias subulata (cardenolides) have antiproliferative effect on human cancer cells. Cardenolides isolated from A. subulata can be used as active chemical markers to elaborate phytopharmaceutical preparations. To evaluate the antiproliferative effect of a standardized extract of the aerial parts, based on Asclepias subulata cardenolides. Methods: Four standardized extracts were prepared by HPLC-DAD depending on the concentration of calotropin and the antiproliferative activity was measured for the MTT assay, on the A549, MCF-7, HeLa, PC3 and ARPE cell lines. The concentrations of calotropin used for the standardization of the extracts were 10, 7.6, 5 and 1 mg/dL. Results: Standardization of the A. subulata extract based on calotropin at 7.6 mg/g dry weight was achieved and the antiproliferative activity was evaluated over A549, HeLa and MCF-7 cell lines, obtaining proliferation percentages of 3.8 to 13.4% . Conclusions: The standardized extracts of A. subulata at different concentrations of calotropin showed antiproliferative activity against all the cell lines evaluated. The greatest effect was observed against the HeLa cell line.


Assuntos
Asclepias , Humanos , Asclepias/química , Células HeLa , Extratos Vegetais/farmacologia , Cardenolídeos/química , Cardenolídeos/farmacologia
4.
Protein Pept Lett ; 29(1): 89-101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34875984

RESUMO

BACKGROUND: The herbivores Danaus plexippus (Lepidoptera), Oncopeltus fasciatus, and Aphis nerii (Hemiptera) are special insects that feed on Calotropis procera (Apocynaceae) (Sodom Apple). At least 35 chemically distinct cardenolides have been reported in C. procera. OBJECTIVE: We aimed to evaluate the interaction between cardenolides and Na+/K+ ATPases from herbivores. METHODS: The Na+/K+ ATPases from these insects were modeled, and docking studies were performed involving cardenolides from C. procera. RESULTS: The replacement of serine in sensitive Na+/K+ ATPase by histidine, phenylalanine, and tyrosine in the structures examined suggested spatial impairment caused by interaction, probably making the herbivorous insects resistant against the cardenolides of C. procera. In addition, the ability of the insects to avoid cardenolide toxicity was not correlated with cardenolide polarity. Therefore, the plant fights predation through molecular diversity, and the insects, regardless of their taxonomy, face this molecular diversity through amino acid replacements at key positions of the enzyme targeted by the cardenolides. CONCLUSION: The results show the arsenal of chemically distinct cardenolides synthesized by the C. procera.


Assuntos
Apocynaceae , Calotropis , Calotropis/metabolismo , Cardenolídeos/química , Cardenolídeos/metabolismo , Cardenolídeos/farmacologia , Herbivoria , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Cardiovasc Toxicol ; 22(1): 78-87, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655414

RESUMO

In the present study, we investigated the cardioactive glycosides oleandrin and ouabain, and compared them to digoxin in a model of cardiotoxicity induced by doxorubicin. Adult rats were distributed into four experimental groups. Each group was challenged with a single intraperitoneal application of doxorubicin at a dose of 12 mg/kg. Then, they were treated with saline solution and the glycosides oleandrin, ouabain, and digoxin at a dose of 50 µg/kg, for 7 days. They underwent echocardiography, electrocardiography, hematologic, biochemical tests, and microscopic evaluation of the heart. All animals presented congestive heart failure, which was verified by a reduction in the ejection fraction. Oleandrin and digoxin were able to significantly reduce (p < 0.05) the eccentric remodeling caused by doxorubicin. Oleandrin and digoxin were significantly lower (p < 0.05) than the control group in maintaining systolic volume and left ventricular volume in diastole. Other parameters evaluated did not show significant statistical differences. All animals showed an increase in erythrocyte count, and an increase in the duration of the QRS complex on the ECG and myocardial necrosis at the histopathological analysis. It is concluded that the glycosides oleandrin, ouabain, and digoxin in the used dosage do not present therapeutic potential for the treatment of congestive heart failure caused by doxorubicin.


Assuntos
Cardenolídeos/farmacologia , Glicosídeos Cardíacos/farmacologia , Cardiotônicos/farmacologia , Digoxina/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Ouabaína/farmacologia , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardenolídeos/toxicidade , Glicosídeos Cardíacos/toxicidade , Cardiotônicos/toxicidade , Cardiotoxicidade , Digoxina/toxicidade , Modelos Animais de Doenças , Doxorrubicina , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/fisiopatologia , Ouabaína/toxicidade , Ratos Wistar , Recuperação de Função Fisiológica
6.
Mol Cell Biochem ; 476(4): 1825-1848, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33459980

RESUMO

Cardiac glycosides (CGs) are useful drugs to treat cardiac illnesses and have potent cytotoxic and anticancer effects in cultured cells and animal models. Their receptor is the Na+,K+ ATPase, but other plasma membrane proteins might bind CGs as well. Herein, we evaluated the short- and long-lasting cytotoxic effects of the natural cardenolide glucoevatromonoside (GEV) on non-small-cell lung cancer H460 cells. We also tested GEV effects on Na+,K+ -ATPase activity and membrane currents, alone or in combination with selected chemotherapy drugs. GEV reduced viability, migration, and invasion of H460 cells spheroids. It also induced cell cycle arrest and death and reduced the clonogenic survival and cumulative population doubling. GEV inhibited Na+,K+-ATPase activity on A549 and H460 cells and purified pig kidney cells membrane. However, it showed no activity on the human red blood cell plasma membrane. Additionally, GEV triggered a Cl-mediated conductance on H460 cells without affecting the transient voltage-gated sodium current. The administration of GEV in combination with the chemotherapeutic drugs paclitaxel (PAC), cisplatin (CIS), irinotecan (IRI), and etoposide (ETO) showed synergistic antiproliferative effects, especially when combined with GEV + CIS and GEV + PAC. Taken together, our results demonstrate that GEV is a potential drug for cancer therapy because it reduces lung cancer H460 cell viability, migration, and invasion. Our results also reveal a link between the Na+,K+-ATPase and Cl- ion channels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Cardenolídeos/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Citotoxinas/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
7.
Arch Virol ; 165(6): 1385-1396, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32346764

RESUMO

Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3ß-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3ß-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (ß) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.


Assuntos
Antivirais/farmacologia , Cardenolídeos/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Aciclovir/farmacologia , Animais , Antivirais/síntese química , Cardenolídeos/síntese química , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral , Infecções por Herpesviridae/tratamento farmacológico , Humanos , Células Vero
8.
Biochem Pharmacol ; 171: 113679, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669257

RESUMO

There is a renewed interest in the Na+/K+-ATPase (NKA, EC 3.6.3.9) either as a target for new therapeutic uses or for understanding the putative pathophysiological role of its mammalian endogenous ligands. Recent data indicate that bufalin binds to the pig kidney NKA in a way different from ouabain and digoxin, raising the question of a putative class difference between bufadienolides and cardenolides. The purpose of this work was to perform a study of the relationship between structure and both activity and kinetics, focusing mainly on the influence of the lactone ring in C17 (5 vs. 6 membered), the effect of C14-15 cyclization and the carbohydrate moiety in C3. We compared the potency of fourteen related cardiotonic steroids (CTS) for inhibition of the cycling pig kidney NKA in two different concentrations of K+, as well as the affinity for binding to the E2P conformation of the enzyme (Mg-Pi medium) and the potency for inhibiting the E2[2K] conformation of the NKA (K+-pNPPase activity). Cardenolides were clearly sensitive to the antagonistic effect of high K+ concentrations whereas bufadienolides were not or less sensitive. The C14-15 cyclization observed in some bufadienolides, such as resibufogenin and marinobufagin, caused a drastic fall in the affinity for binding to the NKA in the E2P conformation and increased the velocity of K+-pNPPase inhibition. The absence of a carbohydrate moiety in C3 increased the velocity of inhibition. Cardenolides were much more dependent on the E2P conformation for binding than bufadienolides since their ratios of E2[2K] IC50 to E2P Ki were higher than for bufadienolides. Therefore, the present data established the remarkable influence of C14-15 cyclization and of the carbohydrate moiety in C3 on both affinity and kinetics of CTS and indicate that, as a class, bufadienolides would harbor qualitative differences from cardenolides with respect to the NKA conformations to which they can bind.


Assuntos
Bufanolídeos/química , Cardenolídeos/química , Rim/enzimologia , Conformação Proteica , ATPase Trocadora de Sódio-Potássio/química , Relação Estrutura-Atividade , Animais , Bufanolídeos/metabolismo , Bufanolídeos/farmacologia , Cardenolídeos/metabolismo , Cardenolídeos/farmacologia , Cardiotônicos/química , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Digoxina/química , Digoxina/metabolismo , Digoxina/farmacologia , Rim/metabolismo , Cinética , Estrutura Molecular , Ouabaína/química , Ouabaína/metabolismo , Ouabaína/farmacologia , Ligação Proteica , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
9.
Biomed Pharmacother ; 108: 1152-1161, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30372816

RESUMO

Cancer is an important public health problem, being one of the leading causes of death worldwide. Most antineoplastic agents cause severe toxic effects and some types of cancer do not respond or are resistant to the existing pharmacotherapy, necessitating the research and development of new therapeutic strategies. Cardenolides have shown significant antitumor activity due to their ability to inhibit the Na+K+ATPase enzyme, and the expression of this enzyme is increased in tumor cells. Glucoevatromonoside containing peracetylated glucose hydroxyl groups (GEVPG) is a cardenolide derivative that has low solubility in aqueous media, which constitutes a barrier to its potential biological applications. In this context, the use of liposomes represents a promising strategy to deliver GEVPG, thus allowing its intravenous administration. In this study, long-circulating and fusogenic liposomes containing GEVPG (SpHL-GEVPG) were developed, and their chemical and physicochemical properties were evaluated. SpHL-GEVPG presented adequate properties, including a mean diameter of 182.2 ± 2.7 nm, a polydispersity index equal to 0.36 ± 0.03, a zeta potential of -2.37 ± 0.31 mV, and a GEVPG entrapment of 0.38 ± 0.04 mg/mL. Moreover, this formulation showed a good stability after having been stored for 30 days at 4 °C. The cytotoxic studies against breast (MDA-MB-231, MCF-7, and SKBR-3) and lung (A549) cancer cell lines demonstrated that SpHL-GEVPG treatment significantly reduced the cell viability. In addition, the SpHL-GEVPG formulation presented a good selectivity toward these cancer cells. The evaluation of the therapeutic efficacy of the treatment with SpHL-GEVPG showed a potent anticancer effect in an A549 human lung cancer xenograft model. SpHL-GEVPG administered at doses of 1.0 and 2.0 mg/kg (i.v.) induced antitumor effect comparable to paclitaxel given at dose of 10 mg/kg (i.v.) to mice. Therefore, the results of the present work indicate the potential applicability of SpHL-GEVPG as a new anticancer formulation.


Assuntos
Antineoplásicos/farmacologia , Cardenolídeos/farmacologia , Lipossomos/química , Animais , Antineoplásicos/química , Cardenolídeos/química , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Genet Mol Res ; 15(2)2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-27173346

RESUMO

The bioactive compounds proceraside A, frugoside and calotropin, which were extracted from the root bark of Calotropis procera (Aiton) W.T. Aiton (family Asclepiadaceae), were recently reported to inhibit the growth of inhibition against various human cancer cell lines in vitro. However, their modes of action have not been clearly defined. Therefore, we attempted an in silico approach to gain insights into their binding modes against the following selected molecular targets: CDK-2, CDK-6, topoisomerase I, BCL-2, VEGFR-2, telomere: G-quadruplex, and topoisomerase II. These targets were selected based on their key roles in cancer progression via the regulation of the cell cycle and DNA replication. Molecular-docking analyses revealed that proceraside A was the best docked ligand against all the targets, with the exception of telomere-G: quadruplex. Furthermore, it displayed the lowest binding energies and inhibition constants, and critical hydrogen bonds and hydrophobic interactions with the targets were also revealed. The present study may aid in the identification of possible targets for proceraside A, and might provide a plausible explanation for its proven anti-tumor activities. Moreover, the result of this study may further guide structure-activity relationship studies used to generate more potent target-specific inhibitors.


Assuntos
Glicosídeos Cardíacos/química , Glicosídeos Cardíacos/farmacologia , Replicação do DNA/fisiologia , Substâncias Macromoleculares/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Cardenolídeos/química , Cardenolídeos/farmacologia , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Digitoxigenina/análogos & derivados , Digitoxigenina/química , Digitoxigenina/farmacologia , Humanos , Ligantes , Substâncias Macromoleculares/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA