Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680862

RESUMO

Lignocellulose is one of the most abundant renewable carbon sources, representing an alternative to petroleum for the production of fuel and chemicals. Nonetheless, the lignocellulose saccharification process, to release sugars for downstream applications, is one of the most crucial factors economically challenging to its use. The synergism required among the various carbohydrate-active enzymes (CAZymes) for efficient lignocellulose breakdown is often not satisfactorily achieved with an enzyme mixture from a single strain. To overcome this challenge, enrichment strategies can be applied to develop microbial communities with an efficient CAZyme arsenal, incorporating complementary and synergistic properties, to improve lignocellulose deconstruction. We report a comprehensive and deep analysis of an enriched rumen anaerobic consortium (ERAC) established on sugarcane bagasse (SB). The lignocellulolytic abilities of the ERAC were confirmed by analyzing the depolymerization of bagasse by scanning electron microscopy, enzymatic assays, and mass spectrometry. Taxonomic analysis based on 16S rRNA sequencing elucidated the community enrichment process, which was marked by a higher abundance of Firmicutes and Synergistetes species. Shotgun metagenomic sequencing of the ERAC disclosed 41 metagenome-assembled genomes (MAGs) harboring cellulosomes and polysaccharide utilization loci (PULs), along with a high diversity of CAZymes. The amino acid sequences of the majority of the predicted CAZymes (60% of the total) shared less than 90% identity with the sequences found in public databases. Additionally, a clostridial MAG identified in this study produced proteins during consortium development with scaffoldin domains and CAZymes appended to dockerin modules, thus representing a novel cellulosome-producing microorganism.IMPORTANCE The lignocellulolytic ERAC displays a unique set of plant polysaccharide-degrading enzymes (with multimodular characteristics), cellulosomal complexes, and PULs. The MAGs described here represent an expansion of the genetic content of rumen bacterial genomes dedicated to plant polysaccharide degradation, therefore providing a valuable resource for the development of biocatalytic toolbox strategies to be applied to lignocellulose-based biorefineries.


Assuntos
Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Microbioma Gastrointestinal , Lignina/metabolismo , Consórcios Microbianos , Polissacarídeos/metabolismo , Animais , Bactérias Anaeróbias/enzimologia , Celulases/metabolismo , Celulose , Rúmen/microbiologia , Saccharum
2.
J Ind Microbiol Biotechnol ; 44(6): 825-834, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28181082

RESUMO

The plant cell wall is a source of fermentable sugars in second-generation bioethanol production. However, cellulosic biomass hydrolysis remains an obstacle to bioethanol production in an efficient and low-cost process. Clostridium thermocellum has been studied as a model organism able to produce enzymatic blends that efficiently degrade lignocellulosic biomass, and also as a fermentative microorganism in a consolidated process for the conversion of lignocellulose to bioethanol. In this study, a C. thermocellum strain (designated B8) isolated from goat rumen was characterized for its ability to grow on sugarcane straw and cotton waste, and to produce cellulosomes. We also evaluated C. thermocellum gene expression control in the presence of complex lignocellulosic biomasses. This isolate is capable of growing in the presence of microcrystalline cellulose, sugarcane straw and cotton waste as carbon sources, producing free enzymes and residual substrate-bound proteins (RSBP). The highest growth rate and cellulase/xylanase production were detected at pH 7.0 and 60 °C, after 48 h. Moreover, this strain showed different expression levels of transcripts encoding cellulosomal proteins and proteins with a role in fermentation and catabolic repression.


Assuntos
Clostridium thermocellum/enzimologia , Lignina/metabolismo , Animais , Biomassa , Celulase/metabolismo , Celulossomas/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/crescimento & desenvolvimento , Clostridium thermocellum/isolamento & purificação , Fermentação/genética , Regulação Bacteriana da Expressão Gênica , Cabras , Xilosidases/metabolismo
3.
Enzyme Microb Technol ; 97: 43-54, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28010772

RESUMO

The main goal of the present study was a complete proteomic characterization of total proteins eluted from residual substrate-bound proteins (RSBP), and cellulosomes secreted by Clostridium thermocellum B8 during growth in the presence of microcrystalline cellulose as a carbon source. The second goal was to evaluate their potential use as enzymatic blends for hydrolyzing agro-industrial residues to produce fermentable sugars. Protein identification through LC-MS/MS mass spectrometry showed that the RSBP sample, in addition to cellulosomal proteins, contains a wide variety of proteins, including those without a well-characterized role in plant cell wall degradation. The RSBP subsample defined as purified cellulosomes (PC) consists mainly of glycoside hydrolases grouped in families 5, 8, 9, 10 and 48. Dynamic light scattering, DLS, analysis of PC resulted in two protein peaks (pi1 and pi2) presenting molecular masses in agreement with those previously described for cellulosomes and polycellulosomes. These peaks weren't detected after PC treatment with 1.0% Tween. PC and RSBP presented maximal activities at temperatures ranging from 60° to 70°C and at pH 5.0. RSBP retained almost all of its activity after incubation at 50, 60 and 70°C and PC showed remarkable thermostability at 50 and 60°C. RSBP holocellullolytic activities were inhibited by phenolic compounds, while PC showed either increasing activity or a lesser degree of inhibition. RSBP and PC hydrolyze sugar cane straw, cotton waste and microcrystalline cellulose, liberating a diversity of saccharides; however, the highest concentration of released sugar was obtained for assays carried out using PC as an enzymatic blend and after ten days at 50°C.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium thermocellum/metabolismo , Lignina/metabolismo , Biocombustíveis , Biomassa , Biotecnologia , Celulossomas/metabolismo , Clostridium thermocellum/enzimologia , Glicosídeo Hidrolases/metabolismo , Hidrólise , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA