Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(34): e2405632121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150783

RESUMO

Transcription of eukaryotic protein-coding genes generates immature mRNAs that are subjected to a series of processing events, including capping, splicing, cleavage, and polyadenylation (CPA), and chemical modifications of bases. Alternative polyadenylation (APA) greatly contributes to mRNA diversity in the cell. By determining the length of the 3' untranslated region, APA generates transcripts with different regulatory elements, such as miRNA and RBP binding sites, which can influence mRNA stability, turnover, and translation. In the model plant Arabidopsis thaliana, APA is involved in the control of seed dormancy and flowering. In view of the physiological importance of APA in plants, we decided to investigate the effects of light/dark conditions and compare the underlying mechanisms to those elucidated for alternative splicing (AS). We found that light controls APA in approximately 30% of Arabidopsis genes. Similar to AS, the effect of light on APA requires functional chloroplasts, is not affected in mutants of the phytochrome and cryptochrome photoreceptor pathways, and is observed in roots only when the communication with the photosynthetic tissues is not interrupted. Furthermore, mitochondrial and TOR kinase activities are necessary for the effect of light. However, unlike AS, coupling with transcriptional elongation does not seem to be involved since light-dependent APA regulation is neither abolished in mutants of the TFIIS transcript elongation factor nor universally affected by chromatin relaxation caused by histone deacetylase inhibition. Instead, regulation seems to correlate with changes in the abundance of constitutive CPA factors, also mediated by the chloroplast.


Assuntos
Arabidopsis , Cloroplastos , Regulação da Expressão Gênica de Plantas , Luz , Poliadenilação , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Processamento Alternativo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Plant J ; 119(5): 2255-2272, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39015950

RESUMO

Advancing chloroplast genetic engineering in Chlamydomonas reinhardtii remains challenging, decades after its first successful transformation. This study introduces the development of a chloroplast-optimized mNeonGreen fluorescent reporter, enabling in vivo observation through a sixfold increase in fluorescence via context-aware construct engineering. Our research highlights the influence of transcriptional readthrough and antisense mRNA pairing on post-transcriptional regulation, pointing to novel strategies for optimizing heterologous gene expression. We further demonstrate the applicability of these insights using an accessible experimentation system using glass-bead transformation and reestablishment of photosynthesis using psbH mutants, focusing on the mitigation of transcriptional readthrough effects. By characterizing heterologous expression using regulatory elements such as PrrnS, 5'atpA, and 3' rbcL in a sense-transcriptional context, we further documented up to twofold improvement in fluorescence levels. Our findings contribute new tools for molecular biology research in the chloroplast and evidence fundamental gene regulation processes that could enable the development of more effective chloroplast engineering strategies. This work not only paves the way for more efficient genetic engineering of chloroplasts but also deepens our understanding of the regulatory mechanisms at play.


Assuntos
Chlamydomonas reinhardtii , Cloroplastos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas , Transcrição Gênica , Genes Reporter , Fotossíntese/genética , RNA Antissenso/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo
3.
New Phytol ; 243(4): 1406-1423, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922903

RESUMO

The GOLDEN2-LIKE (GLK) transcription factors act as a central regulatory node involved in both developmental processes and environmental responses. Marchantia polymorpha, a basal terrestrial plant with strategic evolutionary position, contains a single GLK representative that possesses an additional domain compared to spermatophytes. We analyzed the role of MpGLK in chloroplast biogenesis and development by altering its levels, preforming transcriptomic profiling and conducting chromatin immunoprecipitation. Decreased MpGLK levels impair chloroplast differentiation and disrupt the expression of photosynthesis-associated nuclear genes, while overexpressing MpGLK leads to ectopic chloroplast biogenesis. This demonstrates the MpGLK functions as a bona fide GLK protein, likely representing an ancestral GLK architecture. Altering MpGLK levels directly regulates the expression of genes involved in Chl synthesis and degradation, similar to processes observed in eudicots, and causes various developmental defects in Marchantia, including the formation of dorsal structures such as air pores and gemma cups. MpGLK, also directly activates MpMAX2 gene expression, regulating the timing of gemma cup development. Our study shows that MpGLK functions as a master regulator, potentially coupling chloroplast development with vegetative reproduction. This illustrates the complex regulatory networks governing chloroplast function and plant development communication and highlight the evolutionary conservation of GLK-mediated regulatory processes across plant species.


Assuntos
Cloroplastos , Regulação da Expressão Gênica de Plantas , Marchantia , Proteínas de Plantas , Fatores de Transcrição , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Marchantia/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desenvolvimento Vegetal/genética , Fotossíntese/genética
4.
Planta ; 260(1): 28, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878167

RESUMO

MAIN CONCLUSION: We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.


Assuntos
Cloroplastos , Fator 2 de Crescimento de Fibroblastos , Nicotiana , Plantas Geneticamente Modificadas , Proteínas Recombinantes , Nicotiana/genética , Nicotiana/metabolismo , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células HEK293 , Proliferação de Células , Folhas de Planta/metabolismo , Folhas de Planta/genética
5.
BMC Bioinformatics ; 25(1): 160, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649820

RESUMO

BACKGROUND: The reconstruction of the evolutionary history of organisms has been greatly influenced by the advent of molecular techniques, leading to a significant increase in studies utilizing genomic data from different species. However, the lack of standardization in gene nomenclature poses a challenge in database searches and evolutionary analyses, impacting the accuracy of results obtained. RESULTS: To address this issue, a Python class for standardizing gene nomenclatures, SynGenes, has been developed. It automatically recognizes and converts different nomenclature variations into a standardized form, facilitating comprehensive and accurate searches. Additionally, SynGenes offers a web form for individual searches using different names associated with the same gene. The SynGenes database contains a total of 545 gene name variations for mitochondrial and 2485 for chloroplasts genes, providing a valuable resource for researchers. CONCLUSIONS: The SynGenes platform offers a solution for standardizing gene nomenclatures of mitochondrial and chloroplast genes and providing a standardized search solution for specific markers in GenBank. Evaluation of SynGenes effectiveness through research conducted on GenBank and PubMedCentral demonstrated its ability to yield a greater number of outcomes compared to conventional searches, ensuring more comprehensive and accurate results. This tool is crucial for accurate database searches, and consequently, evolutionary analyses, addressing the challenges posed by non-standardized gene nomenclature.


Assuntos
Evolução Molecular , Terminologia como Assunto , Genes de Cloroplastos , Genes Mitocondriais , Bases de Dados Genéticas , Cloroplastos/genética , Internet , Software
6.
Sci Rep ; 13(1): 12469, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528152

RESUMO

Species of Tanaecium (Bignonieae, Bignoniaceae) are lianas distributed in the Neotropics and centered in the Amazon. Members of the genus exhibit exceptionally diverse flower morphology and pollination systems. Here, we sequenced, assembled, and annotated 12 complete and four partial chloroplast genomes representing 15 Tanaecium species and more than 70% of the known diversity in the genus. Gene content and order were similar in all species of Tanaecium studied, with genome sizes ranging between 158,470 and 160,935 bp. Tanaecium chloroplast genomes have 137 genes, including 80-81 protein-coding genes, 37 tRNA genes, and four rRNA genes. No rearrangements were found in Tanaecium plastomes, but two different patterns of boundaries between regions were recovered. Tanaecium plastomes show nucleotide variability, although only rpoA was hypervariable. Multiple SSRs and repeat regions were detected, and eight genes were found to have signatures of positive selection. Phylogeny reconstruction using 15 Tanaecium plastomes resulted in a strongly supported topology, elucidating several relationships not recovered previously and bringing new insights into the evolution of the genus.


Assuntos
Bignoniaceae , Genoma de Cloroplastos , Filogenia , Cloroplastos/genética , Genômica , Evolução Molecular
7.
Trends Plant Sci ; 28(8): 955-967, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37080835

RESUMO

Microalgal chloroplasts, such as those of the model organism Chlamydomonas reinhardtii, are emerging as a new platform to produce recombinant proteins, including industrial enzymes, diagnostics, as well as animal and human therapeutics. Improving transgene expression and final recombinant protein yields, at laboratory and industrial scales, require optimization of both environmental and cellular factors. Most studies on C. reinhardtii have focused on optimization of cellular factors. Here, we review the regulatory influences of environmental factors, including light (cycle time, intensity, and quality), carbon source (CO2 and organic), and temperature. In particular, we summarize their influence via the redox state, cis-elements, and trans-factors on biomass and recombinant protein production to support the advancement of emerging large-scale light-driven biotechnology applications.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Humanos , Microalgas/genética , Microalgas/metabolismo , Genes de Cloroplastos , Biotecnologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
8.
PeerJ ; 10: e14576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545385

RESUMO

Microalgae are organisms that have the ability to perform photosynthesis, capturing CO2 from the atmosphere to produce different metabolites such as vitamins, sugars, lipids, among others, many of them with different biotechnological applications. Recently, these microorganisms have been widely studied due to their possible use to obtain clean energy. It has been postulated that the growth of microalgae and the production of high-energy metabolites depend on the correct function of cellular organelles such as mitochondria and chloroplasts. Thus, the development of different genetic tools to improve the function of these organelles is of high scientific and technological interest. In this paper we review the recent advances in microalgae engineering and the role of cellular organelles in order to increase cell productivity and biomass.


Assuntos
Microalgas , Microalgas/genética , Biotecnologia , Cloroplastos/genética , Fotossíntese , Mitocôndrias/metabolismo
10.
Int J Mol Sci ; 23(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35163736

RESUMO

The barley chloroplast mutator (cpm) is a nuclear gene mutant that induces a wide spectrum of cytoplasmically inherited chlorophyll deficiencies. Plastome instability of cpm seedlings was determined by identification of a particular landscape of polymorphisms that suggests failures in a plastome mismatch repair (MMR) protein. In Arabidopsis, MSH genes encode proteins that are in charge of mismatch repair and have anti-recombination activity. In this work, barley homologs of these genes were identified, and their sequences were analyzed in control and cpm mutant seedlings. A substitution, leading to a premature stop codon and a truncated MSH1 protein, was identified in the Msh1 gene of cpm plants. The relationship between this mutation and the presence of chlorophyll deficiencies was established in progenies from crosses and backcrosses. These results strongly suggest that the mutation identified in the Msh1 gene of the cpm mutant is responsible for the observed plastome instabilities. Interestingly, comparison of mutant phenotypes and molecular changes induced by the barley cpm mutant with those of Arabidopsis MSH1 mutants revealed marked differences.


Assuntos
Arabidopsis , Hordeum , Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Hordeum/genética , Mutação , Plântula/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA