Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269578

RESUMO

Citrus tristeza virus (CTV) is an important threat to the global citrus industry, causing severe economic losses worldwide. The disease management strategies are focused on vector control, tree culling, and the use of resistant varieties and rootstocks. Sweet orange (Citrus sinensis) trees showing either severe or mild CTV symptoms have been observed in orchards in Veracruz, Mexico, and were probably caused by different virus strains. To understand these symptomatic differences, transcriptomic analyses were conducted using asymptomatic trees. CTV was confirmed to be associated with infected plants, and mild and severe strains were successfully identified by a polymorphism in the coat protein (CP) encoding gene. RNA-Seq analysis revealed more than 900 significantly differentially expressed genes in response to mild and severe strains, with some overlapping genes. Importantly, multiple sequence reads corresponding to Citrus exocortis viroid and Hop stunt viroid were found in severe symptomatic and asymptomatic trees, but not in plants with mild symptoms. The differential gene expression profiling obtained in this work provides an overview of molecular behavior in naturally CTV-infected trees. This work may contribute to our understanding of citrus-virus interaction in more natural settings, which can help develop strategies for integrated crop management.


Assuntos
Citrus sinensis/virologia , Closterovirus/patogenicidade , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Vírus de Plantas/patogenicidade , Proteínas Virais/genética , Citrus sinensis/genética , Closterovirus/genética , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Regulação Viral da Expressão Gênica , México , Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , RNA-Seq , Virulência
2.
Viruses ; 9(10)2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023368

RESUMO

Citrus tristeza virus (CTV) is a major pathogen affecting citrus trees worldwide. However, few studies have focused on CTV's evolutionary history and geographic behavior. CTV is locally dispersed by an aphid vector and long distance dispersion due to transportation of contaminated material. With the aim to delve deeper into the CTV-NC (New Clade) genotype evolution, we estimated an evolution rate of 1.19 × 10-3 subs/site/year and the most common recent ancestor in 1977. Furthermore, the place of origin of the genotype was in the United States, and a great expansion of the population was observed in Uruguay. This expansion phase could be a consequence of the increment in the number of naïve citrus trees in Uruguayan orchards encompassing citrus industry growth in the past years.


Assuntos
Citrus/virologia , Closterovirus/genética , Evolução Molecular , Análise Espaço-Temporal , Animais , Afídeos/virologia , Closterovirus/patogenicidade , Genótipo , Filogeografia , Doenças das Plantas/virologia , Estados Unidos , Uruguai
3.
Mol Plant Pathol ; 16(4): 388-99, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25171669

RESUMO

Citrus tristeza virus (CTV) is phloem restricted in natural citrus hosts. The 23-kDa protein (p23) encoded by the virus is an RNA silencing suppressor and a pathogenicity determinant. The expression of p23, or its N-terminal 157-amino-acid fragment comprising the zinc finger and flanking basic motifs, driven by the constitutive 35S promoter of cauliflower mosaic virus, induces CTV-like symptoms and other aberrations in transgenic citrus. To better define the role of p23 in CTV pathogenesis, we compared the phenotypes of Mexican lime transformed with p23-derived transgenes from the severe T36 and mild T317 CTV isolates under the control of the phloem-specific promoter from Commelina yellow mottle virus (CoYMV) or the 35S promoter. Expression of the constructs restricted to the phloem induced a phenotype resembling CTV-specific symptoms (vein clearing and necrosis, and stem pitting), but not the non-specific aberrations (such as mature leaf epinasty and yellow pinpoints, growth cessation and apical necrosis) observed when p23 was ectopically expressed. Furthermore, vein necrosis and stem pitting in Mexican lime appeared to be specifically associated with p23 from T36. Phloem-specific accumulation of the p23Δ158-209(T36) fragment was sufficient to induce the same anomalies, indicating that the region comprising the N-terminal 157 amino acids of p23 is responsible (at least in part) for the vein clearing, stem pitting and, possibly, vein corking in this host.


Assuntos
Citrus/virologia , Closterovirus/genética , Floema/virologia , Plantas Geneticamente Modificadas/virologia , Closterovirus/patogenicidade , Regiões Promotoras Genéticas , Interferência de RNA
4.
Biosens Bioelectron ; 36(1): 62-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22538056

RESUMO

The development of highly-sensitive and label-free operating semiconductor-based, biomaterial detecting sensors has important applications in areas such as environmental science, biomedical research and medical diagnostics. In the present study, we developed an Indium Phosphide (InP) semiconductor-based resistive biosensor using the change of its electronic properties upon biomaterial adsorption as sensing element. To detect biomaterial at low concentrations, the procedure of functionalization and covalent biomolecule immobilization was also optimized to guarantee high molecule density and high reproducibility which are prerequisite for reliable results. The characterization, such as biomolecular conjugation efficiency, detection concentration limits, receptor:ligand specificity and concentration detection range was analyzed by using three different biological systems: i) synthetic dsDNA and two phytopathogenic diseases, ii) the severe CB-form of Citrus Tristeza Virus (CTV) and iii) Xylella fastidiosa, both causing great economic loss worldwide. The experimental results show a sensitivity of 1 pM for specific ssDNA detection and about 2 nM for the specific detection of surface proteins of CTV and X. fastidiosa phytopathogens. A brief comparison with other semiconductor based biosensors and other methodological approaches is discussed and confirms the high sensitivity and reproducibility of our InP based biosensor which could be suitable for reliable early infection diagnosis in environmental and life sciences.


Assuntos
Técnicas Biossensoriais/métodos , Closterovirus/isolamento & purificação , Índio/química , Fosfinas/química , Plantas , Closterovirus/patogenicidade , DNA/química , Limite de Detecção , Plantas/microbiologia , Plantas/virologia , Semicondutores , Sensibilidade e Especificidade , Xylella/isolamento & purificação , Xylella/patogenicidade
5.
Plant Biotechnol J ; 10(5): 597-608, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22405601

RESUMO

Citrus tristeza virus (CTV), the causal agent of the most devastating viral disease of citrus, has evolved three silencing suppressor proteins acting at intra- (p23 and p20) and/or intercellular level (p20 and p25) to overcome host antiviral defence. Previously, we showed that Mexican lime transformed with an intron-hairpin construct including part of the gene p23 and the adjacent 3' untranslated region displays partial resistance to CTV, with a fraction of the propagations from some transgenic lines remaining uninfected. Here, we transformed Mexican lime with an intron-hairpin vector carrying full-length, untranslatable versions of the genes p25, p20 and p23 from CTV strain T36 to silence the expression of these critical genes in CTV-infected cells. Three transgenic lines presented complete resistance to viral infection, with all their propagations remaining symptomless and virus-free after graft inoculation with CTV-T36, either in the nontransgenic rootstock or in the transgenic scion. Accumulation of transgene-derived siRNAs was necessary but not sufficient for CTV resistance. Inoculation with a divergent CTV strain led to partially breaking the resistance, thus showing the role of sequence identity in the underlying mechanism. Our results are a step forward to developing transgenic resistance to CTV and also show that targeting simultaneously by RNA interference (RNAi) the three viral silencing suppressors appears critical for this purpose, although the involvement of concurrent RNAi mechanisms cannot be excluded.


Assuntos
Citrus/virologia , Closterovirus/genética , Resistência à Doença , Genes Supressores , Doenças das Plantas/genética , Interferência de RNA , Citrus/genética , Closterovirus/patogenicidade , Vetores Genéticos , Íntrons , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , RNA Catalítico/genética , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Proteínas Virais/genética
6.
Virol J ; 6: 116, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19642988

RESUMO

The molecular characterization of isolates of citrus tristeza virus (CTV) from eight locations in Mexico was undertaken by analyzing five regions located at the opposite ends of the virus genome. Two regions have been previously used to study CTV variability (coat protein and p23), while the other three correspond to other genomic segments (p349-B, p349-C and p13). Our comparative nucleotide analyses included CTV sequences from different geographical origins already deposited in the GenBank databases. The largest nucleotide differences were located in two fragments located at the 5' end of the genome (p349-B and p349-C). Phylogenetic analyses on those five regions showed that the degree of nucleotide divergence among strains tended to correlate with their pathogenicity. Two main groups were defined: mild, with almost no noticeable effects on the indicator plants and severe, with drastic symptoms. Mild isolates clustered together in every analyzed ORF sharing a genetic distance below 0.022, in contrast with the severe isolates, which showed a more disperse distribution and a genetic distance of 0.276. Analyses of the p349-B and p349-C regions evidenced two lineages within the severe group: severe common subgroup (most of severe isolates) and severe divergent subgroup (T36-like isolates). This study represents the first attempt to analyze the genetic variability of CTV in Mexico by constructing phylogenetic trees based on new genomic regions that use group-specific nucleotide and amino acid sequences. These results may be useful to implement specific assays for strain discrimination. Moreover, it would be an excellent reference for the CTV situation in México to face the recent arrival of brown citrus aphid.


Assuntos
Citrus/virologia , Closterovirus/genética , Closterovirus/patogenicidade , Fases de Leitura Aberta , Doenças das Plantas/virologia , Polimorfismo Genético , Closterovirus/isolamento & purificação , Análise por Conglomerados , México , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Virulência
7.
Virus Genes ; 36(1): 199-207, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17999168

RESUMO

We studied the genetic variability of three genomic regions (p23, p25 and p27 genes) from 11 field Citrus tristeza virus isolates from the two main citrus growing areas of Argentina, a country where the most efficient vector of the virus, Toxoptera citricida, is present for decades. The pathogenicity of the isolates was determinated by biological indexing, single-strand conformation polymorphism analysis showed that most isolates contained high intra-isolate variability. Divergent sequence variants were detected in some isolates, suggesting re-infections of the field plants. Phylogenetic analysis of the predominant sequence variants of each isolate revealed similar grouping of isolates for genes p25 and p27. The analysis of p23 showed two groups contained the severe isolates. Our results showed a high intra-isolate sequence variability suggesting that re-infections could contribute to the observed variability and that the host can play an important role in the selection of the sequence variants present in these isolates.


Assuntos
Citrus/virologia , Closterovirus/genética , Polimorfismo Conformacional de Fita Simples , Sequência de Aminoácidos , Argentina , Sequência de Bases , Clonagem Molecular , Closterovirus/classificação , Closterovirus/isolamento & purificação , Closterovirus/patogenicidade , Variação Genética , Haplótipos , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/virologia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA