Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 49(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37026525

RESUMO

Nuclear receptor coactivator 3 (NCoA3) is a transcriptional coactivator of NF­κB and other factors, which is expressed at relatively low levels in normal cells and is amplified or overexpressed in several types of cancer, including breast tumors. NCoA3 levels have been shown to be decreased during adipogenesis; however, its role in tumor­surrounding adipose tissue (AT) remains unknown. Therefore, the present study assessed the modulation of NCoA3 in breast cancer­associated adipocytes and evaluated its association with the expression of inflammatory markers. 3T3­L1 adipocytes were stimulated with conditioned medium from human breast cancer cell lines and the expression levels of NCoA3 were evaluated by reverse transcription­quantitative (q)PCR. NF­κB activation was measured by immunofluorescence, and tumor necrosis factor and monocyte chemoattractant protein 1 levels were analyzed by qPCR and dot blot assays. The results obtained from the in vitro model were supported using mammary AT (MAT) from female mice, MAT adjacent to tumors from patients with breast cancer and bioinformatics analysis. The results revealed that adipocytes expressing high levels of NCoA3 were mainly associated with a pro­inflammatory profile. In 3T3­L1 adipocytes, NCoA3 downregulation or NF­κB inhibition reversed the expression of inflammatory molecules. In addition, MAT from patients with a worse prognosis exhibited high levels of this coactivator. Notably, adipocyte NCoA3 levels could be modulated by inflammatory signals from tumors. The modulation of NCoA3 levels in synergy with NF­κB activity in MAT in a tumor context could be factors required to establish breast cancer­associated inflammation. As adipocytes are involved in the development and progression of breast cancer, this signaling network deserves to be further investigated to improve future tumor treatments.


Assuntos
Neoplasias da Mama , Coativador 3 de Receptor Nuclear , Animais , Feminino , Humanos , Camundongos , Adipócitos/metabolismo , Neoplasias da Mama/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Coativador 3 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/metabolismo , Regulação para Cima , Células 3T3-L1
2.
Cell Oncol (Dordr) ; 44(3): 627-641, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33616840

RESUMO

PURPOSE: CFTR mutations not only cause cystic fibrosis, but also increase the risk of colorectal cancer. A putative role of CFTR in colorectal cancer patients without cystic fibrosis has so far, however, not been investigated. RAC3 is a nuclear receptor coactivator that has been found to be overexpressed in several human tumors, and to be required for maintaining cancer stemness. Here, we investigated the functional relationship between CFTR and RAC3 for maintaining cancer stemness in human colorectal cancer. METHODS: Cancer stemness was investigated by analysing the expression of stem cell markers, clonogenic growth and selective retention of fluorochrome, using stable transfection of shCFTR or shRAC3 in HCT116 colorectal cancer cells. In addition, we performed pathway enrichment and network analyses in both primary human colorectal cancer samples (TCGA, Xena platform) and Caco-2 colorectal cancer cells including (1) CD133+ or CD133- side populations and (2) CFTRwt or CFTRmut cells (ConsensusPathDB, STRING, Cytoscape, GeneMANIA). RESULTS: We found that the CD133+ side population expresses higher levels of RAC3 and CFTR than the CD133- side population. RAC3 overexpression increased CFTR expression, whereas CFTR downregulation inhibited the cancer stem phenotype. CFTR mRNA levels were found to be increased in colorectal cancer samples from patients without cystic fibrosis compared to those with CFTR mutations, and this correlated with an increased expression of RAC3. The expression pattern of a gene set involved in inflammatory response and nuclear receptor modulation in CD133+ Caco-2 cells was found to be shared with that in CFTRwt Caco-2 cells. These genes may contribute to colorectal cancer development. CONCLUSIONS: CFTR may play a non-tumor suppressor role in colorectal cancer development and maintenance involving enhancement of the expression of a set of genes related to cancer stemness and development in patients without CFTR mutations.


Assuntos
Neoplasias Colorretais/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células-Tronco Neoplásicas/patologia , Coativador 3 de Receptor Nuclear/metabolismo , Células CACO-2 , Neoplasias Colorretais/metabolismo , Células HCT116 , Humanos , Células-Tronco Neoplásicas/metabolismo
3.
Genet Mol Res ; 14(3): 10376-83, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26345978

RESUMO

The aim of this study was to investigate the expression of AIB1 in human esophageal squamous cell carcinoma and its correlation with Ki67 expression. The immunohistochemical method streptavidin-perosidase was used to analyze the expression of AIB1 and Ki67 in specimens from 60 patients with esophageal squamous cell carcinoma and in 20 control individuals with normal esophageal tissue. Expression correlation, clinical significance, and relationships between the two groups were determined. In the 20 individuals with normal esophageal mucosa cells, AIB expression was primarily detected at low levels in the nucleus or not at all, whereas 41.6% of specimens from individuals with esophageal squamous cell carcinoma exhibited high levels of AIB1 expression (P < 0.05). Furthermore, overexpression of AIB1 was observed more frequently in carcinoma specimens with late T stages (T3/ T4) and lymph node metastases (P < 0.05). No significant differences were observed in AIB1 expression by gender, age, or pathological type (P < 0.05). Comparatively, the rate of positive expression of Ki67 In esophageal squamous cell carcinoma specimens was 65.0% (39/60) (P < 0.05). Of these, 29 specimens exhibited simultaneous expression of AIB1, 25 of which demonstrated AIB1 overexpression; expression of AIB1 and Ki67 was positively correlated (P < 0.01). In summary, the results from this study suggested that AIB1 protein expression was associated with the T stage and lymph node metastasis in esophageal squamous cell carcinoma, and that Ki67 might play a role in the AIB1 non-steroid receptor pathway.


Assuntos
Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Esofágicas/patologia , Coativador 3 de Receptor Nuclear/metabolismo , Adulto , Idoso , Carcinoma de Células Escamosas/genética , Transformação Celular Neoplásica/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago , Esôfago/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Coativador 3 de Receptor Nuclear/genética
4.
Int J Cancer ; 136(11): 2680-92, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25363551

RESUMO

There is emerging interest in understanding the role of progesterone receptors (PRs) in breast cancer. The aim of this study was to investigate the proliferative effect of progestins and antiprogestins depending on the relative expression of the A (PRA) and B (PRB) isoforms of PR. In mifepristone (MFP)-resistant murine carcinomas antiprogestin responsiveness was restored by re-expressing PRA using demethylating agents and histone deacetylase inhibitors. Consistently, in two human breast cancer xenograft models, one manipulated to overexpress PRA or PRB (IBH-6 cells), and the other expressing only PRA (T47D-YA) or PRB (T47D-YB), MFP selectively inhibited the growth of PRA-overexpressing tumors and stimulated IBH-6-PRB xenograft growth. Furthermore, in cells with high or equimolar PRA/PRB ratios, which are stimulated to proliferate in vitro by progestins, and are inhibited by MFP, MPA increased the interaction between PR and the coactivator AIB1, and MFP favored the interaction between PR and the corepressor SMRT. In a PRB-dominant context in which MFP stimulates and MPA inhibits cell proliferation, the opposite interactions were observed. Chromatin immunoprecipitation assays in T47D cells in the presence of MPA or MFP confirmed the interactions between PR and the coregulators at the CCND1 and MYC promoters. SMRT downregulation by siRNA abolished the inhibitory effect of MFP on MYC expression and cell proliferation. Our results indicate that antiprogestins are therapeutic tools that selectively inhibit PRA-overexpressing tumors by increasing the SMRT/AIB1 balance at the CCND1 and MYC promoters.


Assuntos
Ciclina D1/genética , Neoplasias Mamárias Experimentais/tratamento farmacológico , Mifepristona/farmacologia , Progestinas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Receptores de Progesterona/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Correpressor 2 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Regiões Promotoras Genéticas
5.
Clin Transl Oncol ; 15(11): 947-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23606350

RESUMO

INTRODUCTION: Nuclear receptor coactivator amplified in breast cancer-1 (AIB1), a new oncogenic coactivator, is commonly overexpressed and amplified in variety of human cancers. However, the expression of AIB1 in papillary thyroid carcinoma (PTC), the major histologic type of thyroid cancer, and its clinical significance are still unclear. MATERIALS AND METHODS: AIB1 expression in PTC was examined by immunohistochemistry using tissue microarrays comprised of 90 primary PTC, 46 matched lymph node, and 20 normal thyroid tissue specimens in this study. RESULTS: In the normal thyroid specimens, AIB1 expression was either absent or at low levels. In contrast, AIB1 overexpression was detected in 50 of 83 (60.2 %) primary PTC specimens. Up-regulated AIB1 was evident in 39 of 46 (73.5 %) matched lymph nodes. Overexpression of AIB1 was observed more frequently in PTCs with lymph node metastasis [N1a/N1b, 39/46 (73.5 %)] versus PTCs without lymph node metastasis [N0, 14/34 (41.2 %)]. Furthermore, high-level AIB1 expression was only observed in the lymph node-positive specimens. Moreover, we found no correlation between AIB1 expression and ER expression in PTC tissues. CONCLUSIONS: Our findings suggest that overexpression of AIB1 may be a biomarker for tumorigenesis and progression of PTC and may play an important role in its acquisition of a metastatic phenotype.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Papilar/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Papilar/patologia , Criança , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Análise Serial de Tecidos , Adulto Jovem
6.
Reproduction ; 144(6): 723-35, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23081895

RESUMO

Cystic ovarian disease (COD) is an important cause of infertility in cattle. The altered follicular dynamics and cellular differentiation observed in COD may be mediated through a disruption of the expression of steroid receptors and their associated transcriptional cofactors. The aim of this study was to determine the protein expression profiles of ESR1, ESR2, PGR, AR, NCOA3, NCOR2, and PHB2 (REA) in ovarian follicles in an experimental model of COD induced by the administration of ACTH. Ovaries were collected and follicles were dissected from heifers during the follicular phase (control) or from heifers treated with ACTH to induce the formation of ovarian follicular cysts. Ovaries were fixed, sectioned, and stained immunohistochemically for steroid receptors and the associated transcription factors. The relative expression of ESR1 was similar in follicular cysts and in tertiary follicles from both control and cystic cows and was significantly higher than in secondary follicles. The expression of ESR2 in the granulosa was higher in cystic follicles. No differences were seen for PGR. The expression of androgen receptor was significantly increased in tertiary follicles with lower immunostaining in cysts. The expression of NCOA3 was observed in the granulosa and theca with a significantly increased expression in the theca interna of cystic follicles. The highest levels of NCOR2 expression in granulosa, theca interna, and theca externa were observed in cysts. In granulosa cells, NCOR2 levels increase progressively as follicles mature and the treatment had no effect. In summary, ovaries from animals with induced COD exhibited altered steroid receptor expression compared with normal animals, as well as changes in the expression of their regulators. It is reasonable to suggest that in conditions characterized by altered ovulation and follicular persistence, such as COD, changes in the intra-ovarian expression of these proteins could play a role in their pathogenesis.


Assuntos
Doenças dos Bovinos/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Cistos Ovarianos/metabolismo , Receptores de Esteroides/metabolismo , Proteínas Repressoras/metabolismo , Animais , Especificidade de Anticorpos , Bovinos , Feminino , Imuno-Histoquímica , Ovário/metabolismo , Proibitinas
7.
Biochim Biophys Acta ; 1823(2): 379-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22142990

RESUMO

Estradiol (E2) regulates several cellular functions through the interaction with estrogen receptor subtypes, ERα and ERß, which present different functional and regulation properties. ER subtypes have been identified in human astrocytomas, the most common and aggressive primary brain tumors. We studied the role of ER subtypes in cell growth of two human astrocytoma cell lines derived from tumors of different evolution grades: U373 and D54 (grades III and IV, respectively). E2 significantly increased the number of cells in both lines and the co-administration with an ER antagonist (ICI 182, 780) significantly blocked E2 effects. ERα was the predominant subtype in both cell lines. E2 and ICI 182, 780 down-regulated ERα expression. The number of U373 and D54 cells significantly increased after PPT (ERα agonist) treatment but not after DPN (ERß agonist) one. To determine the role of SRC-1 and SRC-3 coactivators in ERα induced cell growth, we silenced them with RNA interference. Coactivator silencing blocked the increase in cell number induced by PPT. The content of proteins involved in proliferation and metastasis was also determined after PPT treatment. Western blot analysis showed that in U373 cells the content of PR isoforms (PR-A and PR-B), EGFR, VEGF and cyclin D1 increased after PPT treatment while in D54 cells only the content of EGFR was increased. Our results demonstrate that E2 induces cell growth of human astrocytoma cell lines through ERα and its interaction with SRC-1 and SRC-3 and also suggest differential roles of ERα on cell growth depending on astrocytoma grade.


Assuntos
Astrocitoma/fisiopatologia , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/fisiologia , Ciclina D1/genética , Ciclina D1/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptor alfa de Estrogênio/genética , Humanos , Coativador 1 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Endocrine ; 37(1): 194-200, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20963570

RESUMO

Progesterone (P(4)) and estradiol (E(2)) regulate many cell functions through their interaction with specific intracellular receptors, which require the participation of coactivators such as SRC-1 and SRC-3 for enhancing their transcriptional activity. Coactivator expression is altered in many cancers and in some of them their expression is regulated by P(4) and E(2). In this study, we determined progesterone and estrogen receptor isoform expression in two human astrocytoma cell lines with different evolution grade (U373, grade III; and D54, grade IV) by Western Blot. We studied the role of P(4) and E(2) on SRC-1 and SRC-3 expression in U373 and D54 cell lines by RT-PCR and Western blot. In U373 cells, P(4) did not modify SRC-1 expression, but in D54 cells it increased SRC-1 mRNA expression after 12 h of treatment without significant changes after 24 h. P(4) also increased SRC-1 protein content after 24 h, but reduced it after 48 h. E(2) did not change SRC-1 expression in any cell line. SRC-3 expression was not regulated by either E(2) or P(4). Our data suggest that SRC-1 and SRC-3 expression is differentially regulated by sex steroid hormones in astrocytomas and that P(4) regulates SRC-1 expression depending on the evolution grade of human astrocytoma cells.


Assuntos
Astrocitoma/metabolismo , Estradiol/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Progesterona/metabolismo , Western Blotting , Linhagem Celular Tumoral , Humanos , Coativador 1 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Estradiol/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA