Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(1): e0210207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629659

RESUMO

The process of neuronal differentiation is associated with neurite elongation and membrane biogenesis, and phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells. During neuroblast differentiation, the transcription of two genes involved in PtdCho biosynthesis are stimulated: Chka gene for choline kinase (CK) alpha isoform and Pcyt1a gene for CTP:phosphocholine cytidylyltransferase (CCT) alpha isoform. Here we show that CKα is essential for neuronal differentiation. In addition, we demonstrated that KDM2B regulates CKα expression and, as a consequence, neuronal differentiation. This factor is up-regulated in the course of the neuroblasts proliferative and undifferentiated state and down-regulated during differentiation induced by retinoic acid (RA). During proliferation, KDM2B binds to the Box2 located in the Chka promoter repressing its transcription. Interestingly, KDM2B knockdown enhances the levels of CKα expression in neuroblast cells and induces neuronal differentiation even in the absence of RA. These results suggest that KDM2B is required for the appropriate regulation of CKα during neuronal differentiation and to the maintaining of the undifferentiated stage of neuroblast cells.


Assuntos
Colina Quinase/genética , Proteínas F-Box/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neuroblastoma/genética , Tretinoína/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Colina Quinase/metabolismo , Epigênese Genética , Proteínas F-Box/genética , Seguimentos , Técnicas de Silenciamento de Genes , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Células-Tronco Neurais/fisiologia , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima
2.
Artigo em Inglês | MEDLINE | ID: mdl-28754315

RESUMO

The protozoan parasite Leishmania infantum is a causative agent of the disease visceral leishmaniasis, which can be fatal if not properly treated. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthesis pathways are attractive targets for new antileishmanial compounds since these Leishmania cell membrane phospholipids are important for parasite morphology and physiology. In this work we observed Leishmania synthesize PC and PE from extracellular choline and ethanolamine, respectively, suggesting the presence of CDP-choline and CDP-ethanolamine pathways. In addition, Leishmania converted PE to PC, indicating the parasite possesses phosphatidylethanolamine N-methyltransferase (PEMT) activity. The first step in the biosynthesis of PC or PE requires the phosphorylation of choline or ethanolamine by a kinase. We cloned the gene encoding a putative choline/ethanolamine kinase from Leishmania infantum and expressed and purified the encoded recombinant protein. The enzyme possesses choline kinase activity with a Vmax of 3.52µmol/min/mg and an apparent Km value of 0.089mM with respect to choline. The enzyme can also phosphorylate ethanolamine in vitro, but the apparent Km for ethanolamine is 850-fold greater than for choline. In an effort to probe requirements for small molecule inhibition of Leishmania choline kinase, the recombinant enzyme was evaluated for the ability to be inhibited by novel quaternary ammonium salts. The most effective inhibitor was N-iodomethyl-N,N,-dimethyl-N-(6,6-diphenyl hex-5-en-1-yle) ammonium iodide, denoted compound C6. In the presence of 4mM compound C6, the Vmax/Km decreased to approximately 1% of the wild-type catalytic efficiency. In addition, in Leishmania cells treated with compound C6 choline transport was inhibited.


Assuntos
Colina Quinase/metabolismo , Leishmania infantum/metabolismo , Fosfatidilcolinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Proteínas de Protozoários/metabolismo , Colina Quinase/antagonistas & inibidores , Colina Quinase/genética , Inibidores Enzimáticos/química , Leishmania infantum/genética , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/genética , Proteínas de Protozoários/genética , Especificidade por Substrato/fisiologia
3.
Zygote ; 23(2): 257-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24229731

RESUMO

In the principal route of phosphatidylcholine (PC) synthesis the regulatory steps are catalysed by CTP:phosphocholine cytidylyltransferase (CCT) and choline kinase (CK). Knock-out mice in Pcyt1a (CCT gene) and Chka1 (CK gene) resulted in preimplantation embryonic lethality, demonstrating the essential role of this pathway. However, there is still a lack of detailed CCT and CK expression analysis during development. The aim of the current work was to study the expression during early development of both enzymes in the external-fertilization vertebrate Bufo arenarum. Reverse transcription polymerase chain reaction (RT-PCR) and western blot confirmed their presence in unfertilized eggs. Analysis performed in total extracts from staged embryos showed constant protein levels of both enzymes until the 32-cell stage: then they decreased, reaching a minimum in the gastrula before starting to recover. CTP:phosphocholine cytidylyltransferase is an amphitropic enzyme that inter-converts between cytosolic inactive and membrane-bound active forms. Immunoblot analysis demonstrated that the cytosolic:total CCT protein ratio does not change throughout embryogenesis, suggesting a progressive decline of CCT activity in early development. However, PC (and phosphatidylethanolamine) content per egg/embryo remained constant throughout the stages analysed. In conclusion, the current data for B. arenarum suggest that net synthesis of PC mediated by CCT and CK is not required in early development and that supplies for membrane biosynthesis are fulfilled by lipids already present in the egg/embryo reservoirs.


Assuntos
Bufo arenarum/embriologia , Colina Quinase/metabolismo , Colina-Fosfato Citidililtransferase/metabolismo , Embrião não Mamífero/enzimologia , Fosfatidilcolinas/metabolismo , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Bufo arenarum/metabolismo , Colina Quinase/genética , Colina-Fosfato Citidililtransferase/genética , Citosol/enzimologia , Feminino , Masculino , Óvulo/enzimologia , Fosfatidilcolinas/biossíntese , Fosfatidiletanolaminas/metabolismo
4.
Biochim Biophys Acta ; 1841(4): 544-51, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24440820

RESUMO

Neuronal differentiation is a complex process characterized by a halt in proliferation and extension of neurites from the cell body. This process is accompanied by changes in gene expression that mediate the redirection leading to neurite formation and function. Acceleration of membrane phospholipids synthesis is associated with neurite elongation, and phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells. The transcription of two genes in particular encoding key enzymes in the CDP-choline pathway for PtdCho biosynthesis are stimulated; the Chka gene for choline kinase (CK) alpha isoform and the Pcyt1a gene for the CTP:phosphocholine cytidylyltransferase (CCT) alpha isoform. We report that the stimulation of CKα expression during retinoic acid (RA) induced differentiation depends on a promoter region that contains two CCAAT/Enhancer-binding Protein-ß (C/EBPß) sites. We demonstrate that during neuronal differentiation of Neuro-2a cells, RA induces Chka expression by a mechanism that involves ERK1/2 activation which triggers C/EBPß expression. Elevated levels of C/EBPß bind to the Chka proximal promoter (Box1) inducing CKα expression. In addition we identified a downstream sequence named Box2 which together with Box1 is required for the promoter to reach the full induction. This is the first elucidation of the mechanism by which the expression of Chka is coordinately regulated during neuronal differentiation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Neurônios/metabolismo , Fosfolipídeos/biossíntese , Animais , Proteína beta Intensificadora de Ligação a CCAAT/biossíntese , Proliferação de Células , Colina Quinase/biossíntese , Colina Quinase/metabolismo , Colina-Fosfato Citidililtransferase/genética , Colina-Fosfato Citidililtransferase/metabolismo , Humanos , Camundongos , Neuritos/metabolismo , Neurônios/citologia , Fosfatidilcolinas/metabolismo , Fosfolipídeos/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Tretinoína/farmacologia
5.
J Lipid Res ; 54(7): 1798-811, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23641021

RESUMO

Circadian clocks regulate the temporal organization of several biochemical processes, including lipid metabolism, and their disruption leads to severe metabolic disorders. Immortalized cell lines acting as circadian clocks display daily variations in [(32)P]phospholipid labeling; however, the regulation of glycerophospholipid (GPL) synthesis by internal clocks remains unknown. Here we found that arrested NIH 3T3 cells synchronized with a 2 h-serum shock exhibited temporal oscillations in a) the labeling of total [(3)H] GPLs, with lowest levels around 28 and 56 h, and b) the activity of GPL-synthesizing and GPL-remodeling enzymes, such as phosphatidate phosphohydrolase 1 (PAP-1) and lysophospholipid acyltransferases (LPLAT), respectively, with antiphase profiles. In addition, we investigated the temporal regulation of phosphatidylcholine (PC) biosynthesis. PC is mainly synthesized through the Kennedy pathway with choline kinase (ChoK) and CTP:phosphocholine cytidylyltranferase (CCT) as key regulatory enzymes. We observed that the PC labeling exhibited daily changes, with the lowest levels every ~28 h, that were accompanied by brief increases in CCT activity and the oscillation in ChoK mRNA expression and activity. Results demonstrate that the metabolisms of GPLs and particularly of PC in synchronized fibroblasts are subject to a complex temporal control involving concerted changes in the expression and/or activities of specific synthesizing enzymes.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Colina Quinase/metabolismo , Ritmo Circadiano , Fibroblastos/metabolismo , Glicerofosfolipídeos/biossíntese , Fosfatidato Fosfatase/metabolismo , Animais , Células Cultivadas , Relógios Circadianos , Fibroblastos/citologia , Fibroblastos/enzimologia , Camundongos , Células NIH 3T3 , Proteínas Associadas a Pancreatite
6.
IUBMB Life ; 63(9): 714-20, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21818839

RESUMO

Neuronal differentiation is characterized by neuritogenesis and neurite outgrowth, processes, which are critically dependent on membrane biosynthesis, and therefore, on the expression and regulation of enzymes involved in phospholipid biosynthesis. During the last decade a great effort was made to clarify where membrane lipids are synthesized, how the newly synthesized membrane components reach the membrane and are inserted during neuritogenesis and to elucidate the mechanism by which the supply of new membrane components is coordinated with the demand for growth. Phosphatidylcholine is the principal and essential component for mammalian membranes. This review updates the mechanism by which phosphatidylcholine biosynthesis takes place and how it is coordinately regulated during neuronal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Neuritos/fisiologia , Neurônios/metabolismo , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/metabolismo , Animais , Colina Quinase/metabolismo , Colina-Fosfato Citidililtransferase/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Humanos , Mamíferos , Modelos Biológicos , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA