Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 257: 112965, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955078

RESUMO

This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond QA-. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.


Assuntos
Clorofila , Clorpirifos , Clorofila/metabolismo , Clorofila/química , Clorpirifos/metabolismo , Clorpirifos/toxicidade , Fluorescência , Praguicidas/toxicidade , Praguicidas/metabolismo , Fotossíntese/efeitos dos fármacos , Dimetoato/toxicidade , Dimetoato/metabolismo , Espectrometria de Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Monitoramento Ambiental/métodos , Clorofila A/metabolismo , Clorofila A/química , Cinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
2.
Chem Biodivers ; 21(4): e202301564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373281

RESUMO

The development of novel phytotoxic compounds has been an important aim of weed control research. In this study, we synthesized fluorinated chalcone derivatives featuring both electron-donating and electron-withdrawing groups. These compounds were evaluated both as inhibitors of the photosystem II (PSII) electron chain as well as inhibitors of the germination and seedling growth of Amaranthus plants. Chlorophyll a (Chl a) fluorescence assay was employed to evaluate their effects on PSII, while germination experiments were conducted to assess their impact on germination and seedling development. The results revealed promising herbicidal activity for (E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (7 a) and (E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (7 e). Compounds 7 a and 7 e exhibited a reduction in Chl a parameters associated with performance indexes and electron transport per reaction center. This reduction suggests a decrease in PSII activity, attributed to the blockage of electron flow at the quinone pool. Molecular docking analyses of chalcone derivatives with the D1 protein of PSII revealed a stable binding conformation, wherein the carbonyl and fluorine groups interacted with Phe265 and His215 residues, respectively. Additionally, at a concentration of 100 µM, compound 7 e demonstrated pre- and post-emergent herbicidal activity, resulting in a reduction of the seed germination index, radicle and hypocotyl lengths of Amaranthus weeds.


Assuntos
Amaranthus , Chalconas , Herbicidas , Plântula , Complexo de Proteína do Fotossistema II , Chalconas/farmacologia , Simulação de Acoplamento Molecular , Inibidores do Crescimento/farmacologia , Clorofila A , Herbicidas/química , Plantas Daninhas , Clorofila
3.
BMC Plant Biol ; 24(1): 146, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38413850

RESUMO

BACKGROUND: Titanium dioxide nanoparticles (TiO2 NPs) have been reported to have contrasting effects on plant physiology, while their effects on sugar, protein, and amino acid metabolism are poorly understood. In this work, we evaluated the effects of TiO2 NPs on physiological and agronomical traits of tomato (Solanum lycopersicum L.) seedlings. Tomato seeds were treated with TiO2 NPs (1000 and 2000 mg L- 1), TiO2 microparticles (µPs, 2000 mg L- 1) as the size control, and ultrapure water as negative control. RESULTS: The dry matter of stems (DMs), leaves (DMl) and total dry matter (DMt) decreased as particle concentration increased. This trend was also observed in the maximum quantum yield of light-adapted photosystem II (PSII) (Fv´/Fm´), the effective quantum yield of PSII (ΦPSII), and net photosynthesis (Pn). The concentrations of sugars, total soluble proteins, and total free amino acids were unaffected, but there were differences in the daily dynamics of these compounds among the treatments. CONCLUSION: Our results suggest that treating tomato seeds with TiO2 might affect PSII performance, net photosynthesis and decrease biomass production, associated with a concentration- and size-related effect of TiO2 particles.


Assuntos
Nanopartículas , Solanum lycopersicum , Titânio , Plântula/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
4.
Methods Appl Fluoresc ; 11(3)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37257457

RESUMO

This work describes the relationship between the complex of photosystem I and photosystem II in the senescence process of rice leaves observed through changes in the optical response. We studied three varieties of rice plants at different aging times using time-resolved photoluminescence to measure the time decay of the emission, and stationary photoluminescence, to measure the emission wavelength. The spectra obtained with the former technique were fitted with decreasing exponential functions. Two relaxation times were obtained, one ranging between 1.0 and 1.7 ns, and the other, from 5.0 to 10.5 ns. They are associated with the electron's deexcitation of PSI and PSII, respectively, and these decay times increase as the leaf senescence process takes place. The spectra obtained with stationary photoluminescence were fitted with Voigt functions. These spectra exhibit two main peaks around 683 and 730 nm, which could be associated mainly with PSII and PSI emissions, respectively. The PSI de-excitation exhibits higher dispersive processes because chlorophyll-a molecules in it move away from each other, decreasing their concentration. Therefore, it takes longer for electrons to recombine during photosynthesis, as seen in the time-resolve response. Articulating the results of both photoluminescence techniques, the changes in the response of the photosystems of the living rice leaves during senescence are evidenced.


Assuntos
Oryza , Oryza/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta
5.
PeerJ ; 11: e14624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647445

RESUMO

Salt stress is one of the most severe abiotic stresses affecting plant growth and development. The application of silicon (Si) is an alternative that can increase the tolerance of plants to various types of biotic and abiotic stresses. The objective was to evaluate salt stress's effect in vitro and Si's mitigation potential on Aechmea blanchetiana plants. For this purpose, plants already established in vitro were transferred to a culture medium with 0 or 14 µM of Si (CaSiO3). After growth for 30 days, a stationary liquid medium containing different concentrations of NaCl (0, 100, 200, or 300 µM) was added to the flasks. Anatomical and physiological analyses were performed after growth for 45 days. The plants cultivated with excess NaCl presented reduced root diameter and effective photochemical quantum yield of photosystem II (PSII) (ΦPSII) and increased non-photochemical dissipation of fluorescence (qN). Plants that grew with the presence of Si also had greater content of photosynthetic pigments and activity of the enzymes of the antioxidant system, as well as higher values of maximum quantum yield of PSII (FV/FM), photochemical dissipation coefficient of fluorescence (qP) and fresh weight bioaccumulation of roots and shoots. The anatomical, physiological and biochemical responses, and growth induced by Si mitigated the effect of salt stress on the A. blanchetiana plants cultivated in vitro, which can be partly explained by the tolerance of this species to grow in sandbank (Restinga) areas.


Assuntos
Bromeliaceae , Cloreto de Sódio , Cloreto de Sódio/farmacologia , Silício/farmacologia , Bromeliaceae/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo
6.
Photosynth Res ; 155(1): 49-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36266605

RESUMO

Microalgae require copper (Cu) in trace levels for their growth and metabolism, it is a vital component of certain metalloproteins. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less studied. We studied the photosynthesis and growth of the Chlorophyte Monoraphidium sp. exposed to Cu ranging from low (1.7 nM) to high (589.0 nM) free Cu ions (Cu2+) concentrations. The growth rate was unaffected by Cu concentrations in the range of 1.7-7.4 nM Cu2+, but decreased beyond it. The relative maximum electron transport rate (rETRm), saturation irradiance (Ek), photochemical quenching (qP and qL), and PSII operating efficiency [Formula: see text] were stimulated in the 3.4-7.4 nM Cu2+ range, concentrations slightly higher than the control, whereas non-photochemical quenching (NPQ) gradually increased with increasing Cu2+. The photosystem II antenna size [Sigma (II)440] increased under high Cu (589.0 nM), which resulted in a decrease in the quinone A (QA) reduction time (tau). In contrast, the QA re-oxidation time was unaffected by Cu exposure. These findings show that a slight increase in Cu stimulated photosynthesis in Monoraphidium sp., whereas high Cu reduced photosynthesis and increased the dissipation of captured light energy. This research is a contribution to the understanding of the dynamic photo-physiological responses of Monoraphidium sp. to Cu ions.


Assuntos
Clorofíceas , Microalgas , Cobre/farmacologia , Fotossíntese/fisiologia , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Microalgas/metabolismo , Clorofíceas/metabolismo , Clorofila/metabolismo
7.
Plant Physiol Biochem ; 194: 345-360, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463636

RESUMO

Global climate change will impact crops and grasslands, affecting growth and yield. However, is not clear how the combination of warming and increased atmospheric carbon dioxide concentrations ([CO2]) will affect the photosystem II (PSII) photochemistry and the photosynthetic tissue photoinhibition and photoprotection on tropical forages. Here, we evaluated the effects of elevated [CO2] (∼600 µmol mol-1) and warming (+2 °C increase temperature) on the photochemistry of photosystem II and the photoprotection strategies of a tropical C4 forage Panicum maximum Jacq. grown in a Trop-T-FACE facility under well-watered conditions without nutrient limitation. Analysis of the maximum photochemical efficiency of PSII (Fv/Fm), the effective PSII quantum yield Y(II), the quantum yield of regulated energy dissipation Y(NPQ), the quantum yield of non-regulated energy dissipation Y(NO), and the malondialdehyde (MDA) contents in leaves revealed that the photosynthetic apparatus of plants did not suffer photoinhibitory damage, and plants did not increase lipid peroxidation in response to warming and [CO2] enrichment. Plants under warming treatment showed a 12% higher chlorophyll contents and a 58% decrease in α-tocopherol contents. In contrast, carotenoid composition (zeaxanthin and ß-carotene) and ascorbate levels were not altered by elevated [CO2] and warming. The elevated temperature increased both net photosynthesis rate and aboveground biomass but elevated [CO2] increased only net photosynthesis. Adjustments in chlorophyll, de-epoxidation state of the xanthophylls cycle, and tocopherol contents suggest leaves of P. maximum can acclimate to 2 °C warmer temperature and elevated [CO2] when plants are grown with enough water and nutrients during tropical autumn-winter season.


Assuntos
Dióxido de Carbono , Complexo de Proteína do Fotossistema II , Dióxido de Carbono/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese , Clorofila , Folhas de Planta/metabolismo
8.
Plant Biol (Stuttg) ; 25(2): 343-355, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484563

RESUMO

Nickel (Ni) excess often generates oxidative stress in chloroplasts, causing redox imbalance, membrane damage and negative impacts on biomass. 24-Epibrassinolide (EBR) is a plant growth regulator of great interest to the scientific community because it is a natural molecule extracted from plants, is biodegradable and environmentally friendly. This study aimed to determine whether EBR can improve ionic homeostasis, antioxidant enzymes, PSII efficiency and biomass by evaluating nutritional, physiological, biochemical and morphological responses of soybean plants subjected to Ni excess. The experiment used four randomized treatments, with two Ni concentrations (0 and 200 µm Ni, described as -Ni2+ and +Ni2+ , respectively) and two concentrations of EBR (0 and 100 nm EBR, described as -EBR and +EBR, respectively). In general, Ni had deleterious effects on chlorophyll fluorescence and gas exchange. In contrast, EBR enhanced the effective quantum yield of PSII photochemistry (15%) and electron transport rate (19%) due to upregulation of SOD, CAT, APX and POX. Exogenous EBR application promoted significant increases in biomass, and these results were explained by improved nutrient content and ionic homeostasis, as demonstrated by increased Ca2+ /Ni2+ , Mg2+ /Ni+2 and Mn2+ /Ni2+ ratios.


Assuntos
Glycine max , Complexo de Proteína do Fotossistema II , Reguladores de Crescimento de Plantas , Antioxidantes/metabolismo , Biomassa , Brassinosteroides/farmacologia , Clorofila/metabolismo , Glycine max/metabolismo , Homeostase , Níquel/farmacologia , Oxirredução , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo
9.
Chem Biodivers ; 19(12): e202200586, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36383100

RESUMO

In the current work, we describe the synthesis of 1,4-dihydropyridine (1,4-DHP) derivatives via Hantzsch multicomponent reaction and their evaluation as photosystem II (PSII) inhibitors through chlorophyll a fluorescence bioassay. Among all the compounds tested, 1,1'-(2,4,6-trimethyl-1,4-dihydropyridine-3,5-diyl)bis(ethan-1-one) (4b) showed best results, reducing the parameters performance index on absorption basis (PIabs ) and electron transport per reaction center by 61 % and 49 %, respectively, as compared to the control. These results indicate the inhibitory activity of PSII over the electron transport chain. Additionally, a molecular docking approach using the protein D1 (PDB code 4V82) was performed in order to assess the structure-activity relationship among the 1,4-DHP derivatives over the PSII, which revealed that both, size of the group at position 4 and the carbonyl groups at the dihydropyridine ring are important for the ligand's interaction, particularly for the hydrogen-bonding interaction with the residues His215, Ser264, and Phe265. Thus, the optimization of these molecular features is the aim of our research group to extend the knowledge of PSII electron chain inhibitors and the establishment of new potent bioactive molecular scaffolds.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/química , Simulação de Acoplamento Molecular , Clorofila A , Fotossíntese , Complexo de Proteína do Fotossistema II , Clorofila/química
10.
Photochem Photobiol Sci ; 21(11): 1931-1946, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35939255

RESUMO

Interaction between 11 nm-sized magnetite nanoparticles and Cichorium intybus plants was studied in this work. In particular, the effect of these nanoparticles on the photosynthesis electron chain was carefully analysed. Magnetite nanoparticles were synthesised and physically characterised by Transmission electron microscopy (TEM), Scanning electron microscopy (SEM)), Energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Magnetic hysteresis cycles and UV-visible spectroscopy. Suspensions of the obtained magnetite nanoparticles with different concentrations (10-1000 ppm) were sprayed over chicory leaves and their photosynthetic activity was evaluated using chlorophyll fluorescence techniques. The study was complemented with the determination of pigment concentration and spectral reflectance indices. The whole set of results was compared to those obtained for control (non-treated) plants. Magnetite nanoparticles caused an increment in the content of Chlorophyll a (up to 36%) and Chlorophyll b (up to 41%). The ratio Chlorophyll/ Carotenoids significantly increased (up to 29%) and the quotient Chlorophyll a/b remained relatively constant, except for a sharp increase (19%) at 100 ppm. The reflectance index that best manifested the improvement in chlorophyll content was the modified Normalised Difference Vegetation Index (mNDI), with a maximum increase of about 35%. Electronic transport fluxes were favoured and the photosynthetic parameters derived from Kautsky's kinetics were improved. An optimal concentration of nanoparticles (100 ppm) for the most beneficial effects on photosynthesis was identified. For this dose, the probability by which a trapped electron in PSII was transferred up to PSI acceptors (ΦRE0) was doubled and the parameter that quantifies the energy conservation of photons absorbed by PSII up to the reduction of PSI acceptors ([Formula: see text]), augmented five times. The fraction of absorbed energy used for photosynthesis increased to 86% and the energy lost as heat by the non-photochemical quenching mechanism was reduced to 31%. Beyond 100 ppm, photosynthetic parameters declined but remained above the values of the control.


Assuntos
Nanopartículas , Folhas de Planta , Clorofila A , Folhas de Planta/metabolismo , Fotossíntese , Clorofila , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA