Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(3): 2855-2867, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38825649

RESUMO

An increasing number of microorganisms are being identified to enhance plant growth and inhibit phytopathogens. Some Cladosporium species form beneficial associations with plants, either as endophytes or by colonizing the rhizosphere. Herein, we evaluated the influence of the Cladosporium psychrotolerans (T01 strain) fungus on the in vitro growth of Arabidopsis thaliana plantlets through direct and split interactions. After 9 days post-inoculation with C. psychrotolerans, Arabidopsis plantlets exhibited a notable increase in fresh weight and lateral roots, particularly in split interactions. Chlorophyll content increased in both plant-fungus interaction conditions, whereas the primary root was inhibited during direct interaction. We observed an increase in the GUS signal from the Arabidopsis auxin-inducible DR5:uidA marker in lateral root tips in both contact and split fungal interactions, and primary root tips in a split interaction. Arabidopsis and tomato plants cultivated in soil pots and inoculated with C. psychrotolerans (T01 strain) showed a positive effect on biomass production. GC/MS analysis detected that the T01 strain emitted volatile organic compounds (VOCs), predominantly alcohols and aldehydes. These VOCs displayed potent inhibitory effects, with a 60% inhibition against Botrytis cinerea and a 50% inhibition against C. gloeosporioides. Our study demonstrates that C. psychrotolerans T01 has the potential to enhance biomass production and inhibit pathogens, making it a promising candidate for green technology applications.


Assuntos
Arabidopsis , Biomassa , Cladosporium , Doenças das Plantas , Solanum lycopersicum , Compostos Orgânicos Voláteis , Cladosporium/crescimento & desenvolvimento , Arabidopsis/microbiologia , Arabidopsis/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Botrytis/crescimento & desenvolvimento , Botrytis/efeitos dos fármacos , Raízes de Plantas/microbiologia
2.
Braz J Biol ; 83: e274368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909586

RESUMO

Fusarium oxysporum is the causal agent of Fusarium wilt in tomato plants. The most common form of control of this disease is through seed chemical treatment. However, the present work presents an alternative method, through the fumigation technique with essential oils. The pathogen F. oxysporum was inoculated on organic cherry tomato seeds through contact with sporulated Petri® plates. Thereafter, seeds were placed in stainless steel crucibles containing a 1.0 x 1.0 cm filter paper adhered to the lid and kept for 24 hours. This paper received 20 µL of each essential oil: tea tree, chia, citronella, lavender, anise basil, clove basil, and deionized water as control. This process was called "seed fumigation by essential oil". After this process, a germination test was carried out in germ boxes with Germitest® paper to verify the variables Germination Speed Index (GSI), Germination (G%), and Mean time to germination (MGT). Mycelial growth was verified in Petri® plates containing PDA medium. The plates containing mycelial growth were observed through scanning electron microscopy to verify possible morphological damage in the hyphae of the pathogen. Tea tree essential oil was the one that allowed the greatest suppression of the phytopathogen. Therefore, new tests were carried out with this specific oil. In germ boxes, tests of germination (G%), Abnormal seedlings count (ASC), and percentage of seedlings with mycelial growth were carried out. In addition, plant elicitation tests were performed in tomato seedlings through the analysis of chitinase, glucanase, and total proteins. All tests were carried out in completely randomized designs with four replications. All data were submitted to the Lilliefors normality test, followed by the analysis of variance, and Tukey's HSD (5% significance) for mean comparison. It was found that tea tree essential oil inhibited the mycelial growth of F. oxysporum without affecting the germination of cherry tomato seeds. Subsequent tests with this oil also demonstrated that there is a reduction in mycelia present in the seeds and a reduction in abnormal seedlings compared to the control. There was no significant difference between the variables tested for plant elicitation.


Assuntos
Fusarium , Óleos Voláteis , Solanum lycopersicum , Óleo de Melaleuca , Compostos Orgânicos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , Sementes , Plântula , Chá
3.
J Chem Ecol ; 49(5-6): 262-275, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36690765

RESUMO

Biological control may benefit from the behavioral manipulation of natural enemies using volatile organic compounds (VOCs). Among these, herbivore-induced plant volatiles (HIPVs) provide potential tools for attracting or retaining predators and parasitoids of insect pests. This work aimed to characterize the VOCs emitted by pear plants in response to attack by Cacopsylla bidens (Hemiptera: Psyllidae), a major pest in pear orchards, to compare these with VOCs induced by a leaf chewing insect, Argyrotaenia sphaleropa (Lepidoptera: Tortricidae), and to evaluate the behavioral response of Chrysoperla externa (Neuroptera: Chrysopidae) to HIPVs from pear plants damaged by either herbivore. The results demonstrated that plants damaged by the pear psylla emitted VOC blends with increased amounts of aliphatic aldehydes. Leafroller damage resulted in increased amounts of benzeneacetonitrile, (E)-4,8-dimethylnona-1,3,7-triene, ß-ocimene and caryophyllene. In olfactometer bioassays, larvae of C. externa were attracted to herbivore-damaged plants when contrasted with undamaged plants. When plant odors from psylla-damaged were contrasted with those of leafroller-damaged plants, C.externa preferred the former, also showing shorter response lag-times and higher response rates when psylla-damaged plants were present. Our results suggest that pear plants respond to herbivory by modifying their volatile profile, and that psylla-induced volatiles may be used as prey-specific chemical cues by chrysopid larvae. Our study is the first to report HIPVs in pear plants attacked by C. bidens, as well as the attraction of C. externa to psyllid-induced volatiles.


Assuntos
Hemípteros , Mariposas , Pyrus , Compostos Orgânicos Voláteis , Animais , Larva/fisiologia , Herbivoria , Insetos , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/química , Plantas
4.
World J Microbiol Biotechnol ; 39(2): 60, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36574179

RESUMO

Fusarium kalimantanense is a genetic lineage of Fusarium oxysporum f. sp. cubense (Foc) and belongs to the Fusarium oxysporum species complex (FOSC). This pathogen is a causative agent of Panama disease, an infection that has caused damage to the banana crop worldwide. Bacillus sp. (LPPC170) showed preliminary antagonist activity against F. kalimantanense (LPPC130) in vitro tests from the cultivation of axenic culture and co-culture with inhibition of mycelial growth of phytopathogen of 41.23%. According to these findings, volatile organic compounds (VOCs) emitted from Bacillus sp. were obtained by solid-phase microextraction and identified by gas chromatography coupled with a mass spectrometer (GC-MS). The multivariate data analysis tool (PLS-DA and Heatmap) identified short-chain organic acids as the main antagonistic VOCs responsible for inhibiting the mycelial growth of LPPC130. Acetic acid, propanoic acid, butanoic acid, valeric acid, and isovaleric acid exhibited a strong inhibitory effect on the mycelial growth of LPPC130, with inhibition of 20.68%, 33.30%, 26.87%, 43.71%, and 53.10%, respectively. Scanning electron microscopy revealed that VOCs caused damage to the vegetative and reproductive structures of the fungus. These results suggest Bacillus LPPC170 as an excellent biocontrol tool against the phytopathogen causative agents of Panama disease.


Assuntos
Bacillus , Fusarium , Musa , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Fungos , Musa/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
5.
Food Microbiol ; 106: 104040, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690443

RESUMO

Botrytis cinerea, the causal agent of the gray mold, is a filamentous fungus that infects blueberries and can cause important production losses in postharvest storage. Considering that the use of synthetic fungicides is not allowed on blueberries in postharvest conditions, alternative and natural strategies are needed to control gray mold. The objective of this work was to evaluate the capability of volatile organic compounds (VOCs) produced by Trichoderma atroviride IC-11 to control B. cinerea growth in blueberries after harvest. These VOCs inhibited almost completely B. cinerea growth in vitro. The most abundant volatile compound was 6-pentyl-α-pyrone (6PP). In vitro assays with pure 6PP confirmed its antifungal activity. The incidence of gray mold was evaluated in blueberries inoculated with B. cinerea and exposed to volatiles of T. atroviride IC-11. Gray mold incidence among those stored in air at 20 °C for 14 days was 100%, while the incidence among the volatile-treated fruit was 17%. Gray mold incidence among those stored in air at 4 °C for 31 days was 82%, while the incidence among the volatile-treated fruit was 11%. T. atroviride IC-11 VOCs inhibited mycelial growth and conidia germination of B. cinerea. The binding of VOCs to the surface of hyphae caused their vacuolation and deterioration. Selective cytotoxicity of 6PP on B. cinerea was observed but not on human intestinal cells at specific concentrations that controlled gray mold. The postharvest mycofumigation of blueberries with T. atroviride IC-11 VOCs is a promising approach to protect these fruits from gray mold.


Assuntos
Mirtilos Azuis (Planta) , Compostos Orgânicos Voláteis , Mirtilos Azuis (Planta)/microbiologia , Botrytis , Humanos , Hypocreales , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
6.
Environ Microbiol ; 24(3): 1430-1453, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995419

RESUMO

Due to an increasing demand for sustainable agricultural practices, the adoption of microbial volatile organic compounds (VOCs) as antagonists against phytopathogens has emerged as an eco-friendly alternative to the use of agrochemicals. Here, we identified three Pseudomonas strains that were able to inhibit, in vitro, up to 80% of mycelial growth of the phytopathogenic fungus Thielaviopsis ethacetica, the causal agent of pineapple sett rot disease in sugarcane. Using GC/MS, we found that these bacteria produced 62 different VOCs, and further functional validation revealed compounds with high antagonistic activity to T. ethacetica. Transcriptomic analysis of the fungal response to VOCs indicated that these metabolites downregulated genes related to fungal central metabolism, such as those involved in carbohydrate metabolism. Interestingly, genes related to the DNA damage response were upregulated, and micro-FTIR analysis corroborated our hypothesis that VOCs triggered DNA damage. Electron microscopy analysis showed critical morphological changes in mycelia treated with VOCs. Altogether, these results indicated that VOCs hampered fungal growth and could lead to cell death. This study represents the first demonstration of the molecular mechanisms involved in the antagonism of sugarcane phytopathogens by VOCs and reinforces that VOCs can be a sustainable alternative for use in phytopathogen biocontrol.


Assuntos
Ascomicetos , Saccharum , Compostos Orgânicos Voláteis , Ascomicetos/metabolismo , Bactérias/metabolismo , Dano ao DNA , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
7.
Curr Microbiol ; 79(2): 35, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982230

RESUMO

Several studies have reported that bacteria produce anti-fungal volatiles. We identified the organic volatile compounds produced by six cacao endophytic bacteria (CEB) strains (Bacillus amyloliquefaciens CFFSUR-B35, Bacillus megaterium CFFSUR-B32, Bacillus muralis CFFSUR-B39, Bacillus pumilus CFFSUR-B34, Bacillus subtilis CFFSUR-B31, and Novosphingobium lindaniclasticum CFFSUR-B36). We evaluated their inhibitory effect on mycelium growth and spore germination of the phytopathogenic fungus Moniliophtora roreri. The volatiles produced by these six CEB, were collected and identified by SPME and GC-MS. Moreover, the inhibitory effect of five synthetic volatile organic compounds, individually and in mixtures (dimethyl disulfide, 2-5 dimethyl pyrazine, α-pinene, 2-heptanone and 2-ethyl hexanol) on M. roreri mycelium growth and spore germination was evaluated. All strains examined produced volatiles in different amounts; 13 to 10 compounds were identified, including sulfide, alcohol benzene derivate, pyrazine, ketone, nitrogen and terpene compounds. The B. subtilis CFFSUR-B31 strain produced the largest number of volatiles, while B. pumilus CFFSUR-B34 produced the fewest and the lowest amounts. The volatile organic compounds produced by B. pumilus CFFSUR-B34, B. muralis CFFSUR-B39 and N. lindaniclasticum CFFSUR-B36 inhibited M. roreri mycelium growth by more than 35%, sporulation by more than 81% and spore germination by more than 74%. However, when synthetic compounds were evaluated individually and in mixtures, 2-ethyl hexanol at 100,000 ppm (20 mg/filter paper disc) inhibited M. roreri mycelium growth by 100%, followed by organic volatile compound mixtures C (dimethyl disulfide, 2,5-dimethyl pyrazine, α-pinene, 2-ethyl-hexanol, 2-Heptanone) and D (only the top four) at 100,000 ppm (4 and 5 mg/filter paper disc) which inhibited spore germination by 97 and 89%, respectively.


Assuntos
Agaricales , Cacau , Compostos Orgânicos Voláteis , Micélio , Compostos Orgânicos Voláteis/farmacologia
8.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833910

RESUMO

The greatest challenge for the avocado (Persea americana Miller) industry is to maintain the quality of the fruit to meet consumer requirements. Anthracnose is considered the most important disease in this industry, and it is caused by different species of the genus Colletotrichum, although other pathogens can be equally important. The defense mechanisms that fruit naturally uses can be triggered in response to the attack of pathogenic microorganisms and also by the application of exogenous elicitors in the form of GRAS compounds. The elicitors are recognized by receptors called PRRs, which are proteins located on the avocado fruit cell surface that have high affinity and specificity for PAMPs, MAMPs, and DAMPs. The activation of defense-signaling pathways depends on ethylene, salicylic, and jasmonic acids, and it occurs hours or days after PTI activation. These defense mechanisms aim to drive the pathogen to death. The application of essential oils, antagonists, volatile compounds, chitosan and silicon has been documented in vitro and on avocado fruit, showing some of them to have elicitor and fungicidal effects that are reflected in the postharvest quality of the fruit and a lower incidence of diseases. The main focus of these studies has been on anthracnose diseases. This review presents the most relevant advances in the use of natural compounds with antifungal and elicitor effects in plant tissues.


Assuntos
Colletotrichum/patogenicidade , Persea/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Quitosana/farmacologia , Colletotrichum/efeitos dos fármacos , Resistência à Doença/fisiologia , Frutas/efeitos dos fármacos , Frutas/microbiologia , Frutas/fisiologia , Óleos Voláteis/farmacologia , Persea/efeitos dos fármacos , Persea/fisiologia , Compostos Orgânicos Voláteis/farmacologia
9.
Chem Biodivers ; 18(11): e2100549, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34643327

RESUMO

Bacteria can produce nitrogenous compounds via both primary and secondary metabolic processes. Many bacterial volatile nitrogenous compounds produced during the secondary metabolism have been identified and reported for their antioxidant, antibacterial, antifungal, algicidal and antitumor activities. The production of these nitrogenous compounds depends on several factors, including the composition of culture media, growth conditions, and even the organic solvent used for their extraction, thus requiring their identification in specific conditions. In this review, we describe the volatile nitrogenous compounds produced by bacteria especially focusing on their antimicrobial activity. We concentrate on azo-compounds mainly pyrazines and pyrrolo-pyridines reported for their activity against several microorganisms. Whenever significant, extraction and identification methods of these compounds are also mentioned and discussed. To the best of our knowledge, this is first review describing volatile nitrogenous compounds from bacteria focusing on their biological activity.


Assuntos
Antibacterianos/farmacologia , Compostos Azo/farmacologia , Bactérias/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Compostos Azo/química , Compostos Azo/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
10.
Braz J Microbiol ; 52(4): 2145-2152, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34287810

RESUMO

Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacteria, designated CBAS 719 T, CBAS 732 and CBAS 720 were isolated from leaf litter samples, collected in Espírito Santo State, Brazil, in 2008. Sequences of the 16S rRNA, gyrB, lepA and recA genes showed that these strains grouped with Burkholderia plantarii LMG 9035 T, Burkholderia gladioli LMG 2216 T and Burkholderia glumae LMG 2196 T in a clade of phytopathogenic Burkholderia species. Digital DNA-DNA hybridization experiments and ANI analyses demonstrated that strain CBAS 719 T represents a novel species in this lineage that is very closely related with B. plantarii. The genome sequence of the type strain is 7.57 Mbp and its G + C content is 69.01 mol%. The absence of growth on TSA medium supplemented with 3% (w/v) NaCl, citrate assimilation, ß-galactosidase (PNPG) activity, and of lipase C14 activity differentiated strain CBAS 719 T from B. plantarii LMG 9035 T, its nearest phylogenetic neighbor. Its predominant fatty acid components were C16:0, C18:1 ω7c, cyclo-C17:0 and summed feature 3 (C16:1 ω7c and/or C15:0 iso 2-OH). Based on these genotypic and phenotypic characteristics, the strains CBAS 719 T, CBAS 732 and CBAS 720 are classified in a novel Burkholderia species, for which the name Burkholderia perseverans sp. nov. is proposed. The type strain is CBAS 719 T (= LMG 31557 T = INN12T).


Assuntos
Antibiose , Burkholderia , Ecossistema , Agaricales/efeitos dos fármacos , Agaricales/fisiologia , Antibiose/fisiologia , Aspergillus/efeitos dos fármacos , Aspergillus/fisiologia , Técnicas de Tipagem Bacteriana , Brasil , Burkholderia/química , Burkholderia/classificação , Burkholderia/genética , DNA Bacteriano/genética , Fosfolipídeos/análise , Filogenia , Phytophthora/efeitos dos fármacos , Phytophthora/fisiologia , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA