Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 36(1): 11, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31879822

RESUMO

Because of their protein cross-linking properties, transglutaminases are widely used in several industrial processes, including the food and pharmaceutical industries. Transglutaminases obtained from animal tissues and organs, the first sources of this enzyme, are being replaced by microbial sources, which are cheaper and easier to produce and purify. Since the discovery of microbial transglutaminase (mTGase), the enzyme has been produced for industrial applications by traditional fermentation process using the bacterium Streptomyces mobaraensis. Several studies have been carried out in this field to increase the enzyme industrial productivity. Researches on gene expression encoding transglutaminase biosynthesis were performed in Streptomyces lividans, Escherichia coli, Corynebacterium glutamicum, Yarrowia lipolytica, and Pichia pastoris. In the first part of this review, we presented an overview of the literature on the origins, types, mediated reactions, and general characterizations of these important enzymes, as well as the studies on recombinant microbial transglutaminases. In this second part, we focus on the application versatility of mTGase in three broad areas: food, pharmacological, and biotechnological industries. The use of mTGase is presented for several food groups, showing possibilities of applications and challenges to further improve the quality of the end-products. Some applications in the textile and leather industries are also reviewed, as well as special applications in the PEGylation reaction, in the production of antibody drug conjugates, and in regenerative medicine.


Assuntos
Biotecnologia , Indústria Alimentícia , Têxteis , Transglutaminases , Animais , Corynebacterium glutamicum/genética , Bases de Dados Factuais , Escherichia coli/genética , Fermentação , Alimentos , Tecnologia de Alimentos , Pichia/genética , Proteínas Recombinantes , Streptomyces/enzimologia , Transglutaminases/biossíntese , Transglutaminases/genética , Yarrowia/genética
2.
Crit Rev Biotechnol ; 39(8): 1031-1055, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31544527

RESUMO

L-lysine is an essential amino acid used in various industrial sectors but mainly in food and animal feed. Intense research has been directed toward increasing its productivity. This literature review presents the state of the art and patent landscape of the industrial production of L-lysine, with a focus on the strain development and fermentation technologies, through geographic, social, and chronological analysis, using the text mining technique. The geographic analysis showed a greater tendency for countries with industrial plants with large production capacity to submit patents or publish articles, while the social analysis reflected the close relationship between educational units and companies. The technologies of each document were divided into optimization of fermentation parameters, conventional mutation, and genetic engineering. Corynebacterium glutamicum and Escherichia coli present the most attractive industrial phenotypes, and their cultivation occurs mainly in fed-batch processes with control parameters carefully selected to enhance metabolism. These strains are generally modified by conventional approaches (e.g., mutagenesis and selection of auxotrophic and/or regulatory mutants) or by genetic engineering technologies. The combination of both these approaches enables genomic breeding and the construction of strains with industrial potential, capable of accumulating more than 120 g/L of L-lysine. From the analysis of these approaches, we developed a descriptive flow of substrate uptake, amino acid metabolism, and mechanisms of excretion of a lysine-producing model cell. It is expected that the various mechanisms of L-lysine production, here shown and described, will become a guide that aids in increasing amino acid productivity without interfering with the strain stability.


Assuntos
Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Microbiologia Industrial , Lisina/biossíntese , Corynebacterium glutamicum/genética , Escherichia coli/genética , Fermentação , Engenharia Metabólica , Patentes como Assunto
3.
BMC Genomics ; 16: 452, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062809

RESUMO

BACKGROUND: Organisms utilize a multitude of mechanisms for responding to changing environmental conditions, maintaining their functional homeostasis and to overcome stress situations. One of the most important mechanisms is transcriptional gene regulation. In-depth study of the transcriptional gene regulatory network can lead to various practical applications, creating a greater understanding of how organisms control their cellular behavior. DESCRIPTION: In this work, we present a new database, CMRegNet for the gene regulatory networks of Corynebacterium glutamicum ATCC 13032 and Mycobacterium tuberculosis H37Rv. We furthermore transferred the known networks of these model organisms to 18 other non-model but phylogenetically close species (target organisms) of the CMNR group. In comparison to other network transfers, for the first time we utilized two model organisms resulting into a more diverse and complete network of the target organisms. CONCLUSION: CMRegNet provides easy access to a total of 3,103 known regulations in C. glutamicum ATCC 13032 and M. tuberculosis H37Rv and to 38,940 evolutionary conserved interactions for 18 non-model species of the CMNR group. This makes CMRegNet to date the most comprehensive database of regulatory interactions of CMNR bacteria. The content of CMRegNet is publicly available online via a web interface found at http://lgcm.icb.ufmg.br/cmregnet .


Assuntos
Corynebacterium glutamicum/genética , Bases de Dados Genéticas , Redes Reguladoras de Genes , Mycobacterium tuberculosis/genética , Biologia Computacional , Corynebacterium glutamicum/classificação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Internet , Mycobacterium tuberculosis/classificação , Filogenia
4.
Genet Mol Res ; 14(1): 2104-17, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25867357

RESUMO

Promoters of genes encoding superoxide dismutase (sodA) and peptide methionine sulfoxide reductase (msrA) from Cory-nebacterium glutamicum were cloned and sequenced. Promoter region analysis of sodA-msrA was unable to identify putative sites of fixed eventual regulators except for possible sites of fixed OxyR and integra-tion host factor. A study of the regulation of these genes was performed using the lacZ gene of Escherichia coli as a reporter placed under the control of sequences downstream of sodA and msrA. In silico analysis was used to identify regulators in the genome of C. glutamicum, which revealed the absence of homologs of soxRS and arcA and the presence of inactive oxyR and putative candidates of the homologs of ahpC, ohrR, integration host factor, furA, IdeR, diphtheria toxin repressor, and mntR.


Assuntos
Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Metionina Sulfóxido Redutases/genética , Estresse Oxidativo/fisiologia , Superóxido Dismutase/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/efeitos da radiação , Metionina Sulfóxido Redutases/biossíntese , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Estresse Fisiológico , Superóxido Dismutase/biossíntese
5.
Braz. j. microbiol ; 45(4): 1477-1483, Oct.-Dec. 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-741303

RESUMO

L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9ΔldhA. GDK-9ΔldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of such by-products as α-ketoglutarate, L-lactate and L-alanine. Since dissolved oxygen (DO) is one of main factors affecting L-lactate formation during L-glutamate fermentation, we investigated the effect of ldhA deletion from GDK-9 under different DO conditions. Under both oxygen-deficient and high oxygen conditions, L-glutamate production by GDK-9ΔldhA was not higher than that of the GDK-9. However, under micro-aerobic conditions, GDK-9ΔldhA exhibited 11.61% higher L-glutamate and 58.50% lower L-alanine production than GDK-9. Taken together, it is demonstrated that deletion of ldhA can enhance L-glutamate production and lower the unwanted by-products concentration, especially under micro-aerobic conditions.


Assuntos
Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , L-Lactato Desidrogenase/genética , Ácido Láctico/metabolismo , Engenharia Metabólica , Corynebacterium glutamicum/genética , Oxigênio/metabolismo , Deleção de Sequência
6.
Braz. J. Microbiol. ; 45(4): 1477-1483, Oct.-Dec. 2014. ilus, graf, tab
Artigo em Inglês | VETINDEX | ID: vti-27527

RESUMO

L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9ΔldhA. GDK-9ΔldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of such by-products as α-ketoglutarate, L-lactate and L-alanine. Since dissolved oxygen (DO) is one of main factors affecting L-lactate formation during L-glutamate fermentation, we investigated the effect of ldhA deletion from GDK-9 under different DO conditions. Under both oxygen-deficient and high oxygen conditions, L-glutamate production by GDK-9ΔldhA was not higher than that of the GDK-9. However, under micro-aerobic conditions, GDK-9ΔldhA exhibited 11.61% higher L-glutamate and 58.50% lower L-alanine production than GDK-9. Taken together, it is demonstrated that deletion of ldhA can enhance L-glutamate production and lower the unwanted by-products concentration, especially under micro-aerobic conditions.


Assuntos
Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , L-Lactato Desidrogenase/genética , Ácido Láctico/metabolismo , Engenharia Metabólica , Corynebacterium glutamicum/genética , Oxigênio/metabolismo , Deleção de Sequência
7.
Braz J Microbiol ; 45(4): 1477-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763057

RESUMO

L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9ΔldhA. GDK-9ΔldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of such by-products as α-ketoglutarate, L-lactate and L-alanine. Since dissolved oxygen (DO) is one of main factors affecting L-lactate formation during L-glutamate fermentation, we investigated the effect of ldhA deletion from GDK-9 under different DO conditions. Under both oxygen-deficient and high oxygen conditions, L-glutamate production by GDK-9ΔldhA was not higher than that of the GDK-9. However, under micro-aerobic conditions, GDK-9ΔldhA exhibited 11.61% higher L-glutamate and 58.50% lower L-alanine production than GDK-9. Taken together, it is demonstrated that deletion of ldhA can enhance L-glutamate production and lower the unwanted by-products concentration, especially under micro-aerobic conditions.


Assuntos
Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/metabolismo , Deleção de Genes , Ácido Glutâmico/metabolismo , L-Lactato Desidrogenase/genética , Ácido Láctico/metabolismo , Engenharia Metabólica , Corynebacterium glutamicum/genética , Oxigênio/metabolismo , Deleção de Sequência
8.
Biol Res ; 41(3): 349-58, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19399347

RESUMO

Corynebacterium glutamicum is widely used in the industrial production of amino acids. We have found that this bacterium grows exponentially on a mineral medium supplemented with gluconate. Gluconate permease and Gluconokinase are expressed in an inducible form and, 6-phosphogluconate dehydrogenase, although constitutively expressed, shows a 3-fold higher specific level in gluconate grown cells than those grown in fructose under similar conditions. Interestingly, these activities are lower than those detected in the strain Escherichia coli M1-8, cultivated under similar conditions. Additionally, here we also confirmed that this bacterium lacks 6-phosphogluconate dehydratase activity. Thus, gluconate must be metabolized through the pentose phosphate pathway. Genes encoding gluconate transport and its phosphorylation were cloned from C. glutamicum, and expressed in suitable E. coli mutants. Sequence analysis revealed that the amino acid sequences obtained from these genes, denoted as gntP and gntK, were similar to those found in other bacteria. Analysis of both genes by RT-PCR suggested constitutive expression, in disagreement with the inducible character of their corresponding activities. The results suggest that gluconate might be a suitable source of reduction potential for improving the efficiency in cultures engaged in amino acids production. This is the first time that gluconate specific enzymatic activities are reported in C. glutamicum.


Assuntos
Corynebacterium glutamicum/genética , Proteínas de Escherichia coli/genética , Gluconatos/metabolismo , Clonagem Molecular , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/crescimento & desenvolvimento , DNA Bacteriano , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Biol. Res ; 41(3): 349-358, 2008. tab
Artigo em Inglês | LILACS | ID: lil-511924

RESUMO

Corynebacterium glutamicum is widely used in the industrial production of amino acids. We have found that this bacterium grows exponentially on a mineral médium supplemented with gluconate. Gluconate permease and Gluconokinase are expressed in an inducible form and, 6-phosphogluconate dehydrogenase, although constituvely expressed, shows a 3-fold higher specific level in gluconate grown cells than those grown in fructose under similar conditions. Interestingly, these activities are lower than those detected in the strain Escherichia coli Ml-8, cultivated under similar conditions. Additionally, here we also confirmed that this bacterium lacks 6-phosphogluconate dehydratase activity. Thus, gluconate must be metabolized through the pentose phosphate pathway. Genes encoding gluconate transport and its phosphorylation were cloned from C. glutamicum, and expressed in suitable E. coli mutants. Sequence analysis revealed that the amino acid sequences obtained from these genes, denoted as gntP and gntK, were similar to those found in other bacteria. Analysis of both genes by RT-PCR suggested constitutive expression, in disagreement with the inducible character of their corresponding activities. The results suggest that gluconate might be a suitable source of reduction potential for improving the efficiency in cultures engaged in amino acids production. This is the first time that gluconate specific enzymatic activities are reported in C. glutamicum.


Assuntos
Corynebacterium glutamicum/genética , Proteínas de Escherichia coli/genética , Gluconatos/metabolismo , Clonagem Molecular , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/crescimento & desenvolvimento , DNA Bacteriano , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Genet Mol Res ; 5(4): 773-89, 2006 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17183485

RESUMO

Corynebacterium glutamicum is a gram-positive soil microorganism able to utilize a large variety of aromatic compounds as the sole carbon source. The corresponding catabolic routes are associated with multiple ring-fission dioxygenases and among other channeling reactions, include the gentisate pathway, the protocatechuate and catechol branches of the beta-ketoadipate pathway and two potential hydroxyquinol pathways. Genes encoding the enzymatic machinery for the bioconversion of aromatic compounds are organized in several clusters in the C. glutamicum genome. Expression of the gene clusters is under specific transcriptional control, apparently including eight DNA-binding proteins belonging to the AraC, IclR, LuxR, PadR, and TetR families of transcriptional regulators. Expression of the gentisate pathway involved in the utilization of 3-hydroxybenzoate and gentisate is positively regulated by an IclR-type activator. The metabolic channeling of ferulate, vanillin and vanillate into the protocatechuate branch of the beta-ketoadipate pathway is controlled by a PadR-like repressor. Regulatory proteins of the IclR and LuxR families participate in transcriptional regulation of the branches of the beta-ketoadipate pathway that are involved in the utilization of benzoate, 4-hydroxybenzoate and protocatechuate. The channeling of phenol into this pathway may be under positive transcriptional control by an AraC-type activator. One of the potential hydroxyquinol pathways of C. glutamicum is apparently repressed by a TetR-type regulator. This global analysis revealed that transcriptional regulation of aromatic compound utilization is mainly controlled by single regulatory proteins sensing the presence of aromatic compounds, thus representing single input motifs within the transcriptional regulatory network of C. glutamicum.


Assuntos
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Hidrocarbonetos Aromáticos/metabolismo , Hidroxibenzoatos/metabolismo , Transcrição Gênica/genética , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA