Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124942

RESUMO

Secondary metabolites produced by fungi are well known for their biological properties, which play important roles in medicine. These metabolites aid in managing infections and treating chronic illnesses, thereby contributing substantially to human health improvement. Despite this extensive knowledge, the vast biodiversity and biosynthetic potential of fungi is still largely unexplored, highlighting the need for further research in natural products. In this review, several secondary metabolites of fungal origin are described, emphasizing novel structures and skeletons. The detection and characterization of these metabolites have been significantly facilitated by advancements in analytical systems, particularly modern hyphenated liquid chromatography/mass spectrometry. These improvements have primarily enhanced sensitivity, resolution, and analysis flow velocity. Since the in vitro production of novel metabolites is often lower than the re-isolation of known metabolites, understanding chromatin-based alterations in fungal gene expression can elucidate potential pathways for discovering new metabolites. Several protocols for inducing metabolite production from different strains are discussed, demonstrating the need for uniformity in experimental procedures to achieve consistent biosynthetic activation.


Assuntos
Produtos Biológicos , Cromatina , Fungos , Fungos/metabolismo , Cromatina/metabolismo , Produtos Biológicos/metabolismo , Metabolismo Secundário , Humanos
2.
Cell Mol Life Sci ; 81(1): 309, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060446

RESUMO

The circadian clock system coordinates metabolic, physiological, and behavioral functions across a 24-h cycle, crucial for adapting to environmental changes. Disruptions in circadian rhythms contribute to major metabolic pathologies like obesity and Type 2 diabetes. Understanding the regulatory mechanisms governing circadian control is vital for identifying therapeutic targets. It is well characterized that chromatin remodeling and 3D structure at genome regulatory elements contributes to circadian transcriptional cycles; yet the impact of rhythmic chromatin topology in metabolic disease is largely unexplored. In this study, we explore how the spatial configuration of the genome adapts to diet, rewiring circadian transcription and contributing to dysfunctional metabolism. We describe daily fluctuations in chromatin contacts between distal regulatory elements of metabolic control genes in livers from lean and obese mice and identify specific lipid-responsive regions recruiting the clock molecular machinery. Interestingly, under high-fat feeding, a distinct interactome for the clock-controlled gene Dbp strategically promotes the expression of distal metabolic genes including Fgf21. Alongside, new chromatin loops between regulatory elements from genes involved in lipid metabolism control contribute to their transcriptional activation. These enhancers are responsive to lipids through CEBPß, counteracting the circadian repressor REVERBa. Our findings highlight the intricate coupling of circadian gene expression to a dynamic nuclear environment under high-fat feeding, supporting a temporally regulated program of gene expression and transcriptional adaptation to diet.


Assuntos
Cromatina , Relógios Circadianos , Ácidos Graxos , Fígado , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade , Animais , Cromatina/metabolismo , Cromatina/genética , Fígado/metabolismo , Camundongos , Relógios Circadianos/genética , Obesidade/metabolismo , Obesidade/genética , Ácidos Graxos/metabolismo , Masculino , Dieta Hiperlipídica/efeitos adversos , Montagem e Desmontagem da Cromatina , Ritmo Circadiano/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Metabolismo dos Lipídeos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
3.
New Phytol ; 243(5): 1810-1822, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970467

RESUMO

Shoot branching is determined by a balance between factors that promote axillary bud dormancy and factors that release buds from the quiescent state. The TCP family of transcription factors is classified into two classes, Class I and Class II, which usually play different roles. While the role of the Class II TCP BRANCHED1 (BRC1) in suppressing axillary bud development in Arabidopsis thaliana has been widely explored, the function of Class I TCPs in this process remains unknown. We analyzed the role of Class I TCP14 and TCP15 in axillary branch development in Arabidopsis through a series of genetic and molecular studies. In contrast to the increased branch number shown by brc1 mutants, tcp14 tcp15 plants exhibit a reduced number of branches compared with wild-type. Our findings provide evidence that TCP14 and TCP15 act by counteracting BRC1 function through two distinct mechanisms. First, they indirectly reduce BRC1 expression levels. Additionally, TCP15 directly interacts with BRC1 decoying it from chromatin and thereby preventing the transcriptional activation of a set of BRC1-dependent genes. We describe a molecular mechanism by which Class I TCPs physically antagonize the action of the Class II TCP BRC1, aligning with their opposite roles in axillary bud development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Cromatina/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética
4.
J Immunol ; 213(5): 619-627, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037267

RESUMO

Sepsis is a complex condition of inflammatory and immune dysregulation, triggered by severe infection. In survivors, chronic inflammation and immune dysregulation linger, facilitating the emergence of infections. CD8 dysfunction contributes to immunosuppression in sepsis survivors. We devised an animal model that enabled us to identify and analyze CD8-intrinsic defects induced by sepsis. We adoptively transferred CD45.1 CD8 OT-I T cells into CD45.2 congenic mice and subjected them to cecal ligature and puncture, to induce abdominal sepsis. One month later, we isolated the transferred CD8 cells. Surface marker expression confirmed they had not been activated through the TCR. CD8 OT-I T cells isolated from septic (or sham-operated) mice were transferred to second recipients, which were challenged with OVA-expressing Listeria monocytogenes. We compared effector capacities between OT-I cells exposed to sepsis and control cells. Naive mice that received OT-I cells exposed to sepsis had higher bacterial burden and a shorter survival when challenged with OVA-expressing L. monocytogenes. OT-I cells isolated from septic mice produced less IFN-γ but had conserved activation, expansion potential, and cytotoxic function. We observed lower transcript levels of IFN-γ and of the long noncoding RNA Ifng-as1, a local regulator of the epigenetic landscape, in cells exposed to sepsis. Accordingly, local abundance of a histone modification characteristic of active promoter regions was reduced in sepsis-exposed CD8 T cells. Our results identify a mechanism through which inflammation in the context of sepsis affects CD8 T cell function intrinsically.


Assuntos
Linfócitos T CD8-Positivos , Cromatina , Interferon gama , Listeria monocytogenes , Sepse , Animais , Sepse/imunologia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Interferon gama/imunologia , Cromatina/imunologia , Cromatina/metabolismo , Listeria monocytogenes/imunologia , Camundongos Endogâmicos C57BL , Transferência Adotiva , Modelos Animais de Doenças , Listeriose/imunologia , Ativação Linfocitária/imunologia
5.
Sci Rep ; 14(1): 10094, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698200

RESUMO

Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.


Assuntos
Cromatina , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Bovinos , Cromatina/genética , Cromatina/metabolismo , Tecido Adiposo/metabolismo , Mutação , Desequilíbrio de Ligação , Estudo de Associação Genômica Ampla , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética
6.
Breast Cancer Res Treat ; 207(1): 91-101, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702584

RESUMO

PURPOSE: Inhibitor of differentiation 4 (ID4) is a dominant-negative regulator of basic helix-loop-helix (bHLH) transcription factors. The expression of ID4 is dysregulated in various breast cancer subtypes, indicating a potential role for ID4 in subtype-specific breast cancer development. This study aims to elucidate the epigenetic regulation of ID4 within breast cancer subtypes, with a particular focus on DNA methylation and chromatin accessibility. METHODS: Bioinformatic analyses were conducted to assess DNA methylation and chromatin accessibility in ID4 regulatory regions across breast cancer subtypes. Gene Set Enrichment Analysis (GSEA) was conducted to identify related gene sets. Transcription factor binding within ID4 enhancer and promoter regions was explored. In vitro experiments involved ER+ breast cancer cell lines treated with estradiol (E2) and Tamoxifen. RESULTS: Distinct epigenetic profiles of ID4 were observed, revealing increased methylation and reduced chromatin accessibility in luminal subtypes compared to the basal subtype. Gene Set Enrichment Analysis (GSEA) implicated estrogen-related pathways, suggesting a potential link between estrogen signaling and the regulation of ID4 expression. Transcription factor analysis identified ER and FOXA1 as regulators of ID4 enhancer regions. In vitro experiments confirmed the role of ER, demonstrating reduced ID4 expression and increased methylation with estradiol treatment. Conversely, Tamoxifen treatment increased ID4 expression, indicating the potential involvement of ER signaling through ERα in the epigenetic regulation of ID4 in breast cancer cells. CONCLUSION: This study shows the intricate epigenetic regulation of ID4 in breast cancer, highlighting subtype-specific differences in DNA methylation and chromatin accessibility.


Assuntos
Neoplasias da Mama , Cromatina , Biologia Computacional , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito , Proteínas Inibidoras de Diferenciação , Regiões Promotoras Genéticas , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Biologia Computacional/métodos , Cromatina/metabolismo , Cromatina/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Linhagem Celular Tumoral , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Elementos Facilitadores Genéticos , Estradiol/farmacologia
7.
Histochem Cell Biol ; 162(1-2): 79-90, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607419

RESUMO

Eukaryotic genomes store information on many levels, including their linear DNA sequence, the posttranslational modifications of its constituents (epigenetic modifications), and its three-dimensional folding. Understanding how this information is stored and read requires multidisciplinary collaborations from many branches of science beyond biology, including physics, chemistry, and computer science. Concurrent recent developments in all these areas have enabled researchers to image the genome with unprecedented spatial and temporal resolution. In this review, we focus on what single-molecule imaging and tracking of individual proteins in live cells have taught us about chromatin structure and dynamics. Starting with the basics of single-molecule tracking (SMT), we describe some advantages over in situ imaging techniques and its current limitations. Next, we focus on single-nucleosome studies and what they have added to our current understanding of the relationship between chromatin dynamics and transcription. In celebration of Robert Feulgen's ground-breaking discovery that allowed us to start seeing the genome, we discuss current models of chromatin structure and future challenges ahead.


Assuntos
Cromatina , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/química , Cromatina/metabolismo , Cromatina/química , Humanos , Animais
8.
Probiotics Antimicrob Proteins ; 16(2): 649-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37076595

RESUMO

The management of fungal diseases imposes an urgent need for the development of effective antifungal drugs. Among new drug candidates are the antimicrobial peptides, and especially their derivatives. Here, we investigated the molecular mechanism of action of three bioinspired peptides against the opportunistic yeasts Candida tropicalis and Candida albicans. We assessed morphological changes, mitochondrial functionality, chromatin condensation, ROS production, activation of metacaspases, and the occurrence of cell death. Our results indicated that the peptides induced sharply contrasting death kinetics, of 6 h for RR and 3 h for D-RR to C. tropicalis and 1 h for WR to C. albicans. Both peptide-treated yeasts exhibited increased ROS levels, mitochondrial hyperpolarization, cell size reduction, and chromatin condensation. RR and WR induced necrosis in C. tropicalis and C. albicans, but not D-RR in C. tropicalis. The antioxidant ascorbic acid reverted the toxic effect of RR and D-RR, but not WR, suggesting that instead of ROS there is a second signal triggered that leads to yeast death. Our data suggest that RR induced a regulated accidental cell death in C. tropicalis, D-RR induced a programmed cell death metacaspase-independent in C. tropicalis, while WR induced an accidental cell death in C. albicans. Our results were obtained with the LD100 and within the time that the peptides induce the yeast death. Within this temporal frame, our results allow us to gain clarity on the events triggered by the peptide-cell interaction and their temporal order, providing a better understanding of the death process induced by them.


Assuntos
Antifúngicos , Candida albicans , Espécies Reativas de Oxigênio/metabolismo , Candida albicans/metabolismo , Antifúngicos/química , Morte Celular , Peptídeos/farmacologia , Peptídeos/metabolismo , Candida tropicalis/metabolismo , Cromatina/metabolismo , Testes de Sensibilidade Microbiana
9.
EMBO J ; 42(24): e113941, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054357

RESUMO

The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA-DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. In response to far-red (FR) light, expression of APOLO anti-correlates with that of its target BRANCHED1 (BRC1), a master regulator of shoot branching in Arabidopsis thaliana. APOLO deregulation results in BRC1 transcriptional repression and an increase in the number of branches. Accumulation of APOLO transcription fine-tunes the formation of a repressive chromatin loop encompassing the BRC1 promoter, which normally occurs only in leaves and in a late response to far-red light treatment in axillary buds. In addition, our data reveal that APOLO participates in leaf hyponasty, in agreement with its previously reported role in the control of auxin homeostasis through direct modulation of auxin synthesis gene YUCCA2, and auxin efflux genes PID and WAG2. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant-environment interactions may therefore become a new tool for sustainable agriculture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Epigênese Genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Fatores de Transcrição/metabolismo
10.
J Cell Sci ; 136(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921359

RESUMO

The nucleolus is sensitive to stress and can orchestrate a chain of cellular events in response to stress signals. Despite being a growth factor, FGF2 has antiproliferative and tumor-suppressive functions in some cellular contexts. In this work, we investigated how the antiproliferative effect of FGF2 modulates chromatin-, nucleolus- and rDNA-associated proteins. The chromatin and nucleolar proteome indicated that FGF2 stimulation modulates proteins related to transcription, rRNA expression and chromatin-remodeling proteins. The global transcriptional rate and nucleolus area increased along with nucleolar disorganization upon 24 h of FGF2 stimulation. FGF2 stimulation induced immature rRNA accumulation by increasing rRNA transcription. The rDNA-associated protein analysis reinforced that FGF2 stimulus interferes with transcription and rRNA processing. RNA Pol I inhibition partially reversed the growth arrest induced by FGF2, indicating that changes in rRNA expression might be crucial for triggering the antiproliferative effect. Taken together, we demonstrate that the antiproliferative FGF2 stimulus triggers significant transcriptional changes and modulates the main cell transcription site, the nucleolus.


Assuntos
Nucléolo Celular , Fator 2 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Nucléolo Celular/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Transcrição Gênica , DNA Ribossômico/genética , Cromatina/genética , Cromatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA