Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Int J Biol Macromol ; 278(Pt 2): 134697, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147352

RESUMO

In this study, lignin derived from corncobs was chemically modified by substituting the hydroxyl groups present in its structure with methacrylate groups through a catalytic reaction using methacrylic anhydride, resulting in methacrylated lignin (ML). These MLs were incorporated in polymerization reaction of the monomer 2-[(acryloyloxy)ethyl trimethylammonium] chloride (Cl-AETA) and Cl-AETA, Cl-AETA/ML polymers were obtained, characterized (spectroscopic, thermal and microscopic analysis), and evaluated for removing Cr (VI) and As (V) from aqueous media in function of pH, contact time, initial metal concentrations and adsorbent amount. The Cl-AETA/ML polymers followed the Langmuir adsorption model for the evaluated metal anions and were able to remove up to 91 % of Cr (VI) with a qmax (maximum adsorption capacity) of 201 mg/g, while for As (V), up to 60 % could be removed with a qmax of 58 mg/g. The results demonstrate that simple modifications in lignin enhance its functionalization and properties, making it suitable for removing contaminants from aqueous media, showing promising results for potential future applications.


Assuntos
Cromo , Lignina , Poluentes Químicos da Água , Lignina/química , Cromo/química , Cromo/isolamento & purificação , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Polímeros/química , Polímeros/síntese química , Água/química , Concentração de Íons de Hidrogênio , Polimerização
2.
Sci Rep ; 14(1): 14937, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942919

RESUMO

The increasing water contamination by toxic heavy metals, particularly hexavalent chromium, has become a significant environmental concern. This study explores the pyrolysis of termite-processed biomass, specifically Pinus elliottii particleboard and its termite droppings (TDs), to produce biochar and its application for chromium (VI) adsorption. Termite droppings, rich in lignin, and particleboard, rich in cellulose, were pyrolyzed at various temperatures to assess the effect of biomass composition on biochar properties. The study found that lignin-rich termite droppings produced biochar with higher fixed carbon content and specific surface area than cellulose-rich particleboard biochar. FTIR and Raman spectroscopy revealed significant molecular structure changes during pyrolysis, which influenced the adsorption capabilities of the biochar. Adsorption experiments demonstrated that TD biochar exhibited significantly higher chromium (VI) adsorption capacity, attributed to its distinct chemical composition and enhanced surface properties due to higher lignin content. These findings underscore the crucial role of lignin in producing efficient biochar for heavy metal adsorption, highlighting the practical applicability of termite-processed biomass in water purification technologies.


Assuntos
Biomassa , Celulose , Carvão Vegetal , Cromo , Isópteros , Lignina , Carvão Vegetal/química , Lignina/química , Cromo/química , Animais , Celulose/química , Adsorção , Isópteros/química , Poluentes Químicos da Água/química , Pirólise , Pinus/química , Purificação da Água/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Environ Sci Pollut Res Int ; 31(20): 29749-29762, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38592625

RESUMO

Water contamination with toxic metals causes harmful effects on the environment and to human health. Although cucurbiturils have carboxyl groups in their portal that can interact with metal ions, there is a lack of studies about their use as metal adsorbent. This scenario has motivated conduction of the present study, which addresses the use of cucurbit[6]uril (CB[6]) and cucurbit[8]uril (CB[8]) for adsorbing Pb and Cr from water samples, in free forms and immobilized in poly(urethane) sponges. The adsorption kinetics revealed that CB[8] leads to faster adsorption compared to CB[6], with equilibrium achieved in 8 h for CB[8] and 48 h for CB[6] for both metals, and achieved up to 80% of decrease in metal concentration. The Langmuir isotherm model provided a better description of adsorption for Cr and Pb in CB[6] and Pb in CB[8] with a maximum concentration adsorbed of 32.47 mg g-1 for Pb in CB[6], while the Dubinin-Radushkevich model was more suitable for Cr adsorption in CB[8]. Sponges containing CB[6] and CB[8] have proven to be efficient for Pb and Cr remediation in tannery effluent samples, reducing Cr and Pb concentration by 42 and 33%, respectively. The results indicate that CB[6] and CB[8], whether used in their pure form or integrated into sponges, exhibit promising potential for efficiently adsorbing metals in aqueous contaminated environments.


Assuntos
Chumbo , Poliuretanos , Poluentes Químicos da Água , Poliuretanos/química , Adsorção , Poluentes Químicos da Água/química , Chumbo/química , Cromo/química , Cinética
4.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276611

RESUMO

The tanning industry generates effluents with high chromium content, which require treatment prior to discharge into the sewage system. This article explores the use of magnetic magnetite nanoparticles (MNPs) to remove Cr(VI) from aqueous solutions, such as tanning effluents. The MNPs were synthesized by coprecipitation reaction using the Olea europaea extract as a reducing agent. Subsequently, they were characterized by dynamic light scattering spectroscopy (DLS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). MNPs with irregular morphology and diameters ranging from 73.28 to 162.90 nm were obtained. Cr(VI) removal was performed using jar test methodology, and its efficiency was evaluated in the laboratory for different initial Cr(VI) (mg/L) concentration and nanoparticle (g/L) concentration. A kinetic study was developed and indicated that the equilibrium adsorption mechanism corresponds to a pseudo-second-order model. Furthermore, the isotherm analysis revealed that chromium adsorption best fits the Langmuir isotherm. Finally, Cr(VI) removal rates from 85% to 100% were achieved in tanning and retanning effluents.


Assuntos
Nanopartículas de Magnetita , Olea , Poluentes Químicos da Água , Purificação da Água , Nanopartículas de Magnetita/química , Cromo/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
5.
J Trace Elem Med Biol ; 82: 127341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091868

RESUMO

Given the importance of the endothelial cell phenotype in dental peri-implant healing processes, the aim of this study was to better assess the involvement of endothelial cells responding to cobalt-chromium (CoCr)-enriched medium. Biologically, cobalt is widely used molecule to induce chemical experimental hypoxia because it stabilizes hypoxia inducible factors (HIF1α). The aplication of hypoxia models provides better experimental condition to allow its impact on cellular metabolism, by looking for biochemical and molecular issues. Thus, this study looks for understaing whether CoCr-based materials are able to modulate endothelial cells considering the hypoxic effect prmoted by cobalt. Firstly, our data shows there is a siginificant effect on endothelial phenotype by modulating the expression of VEGF and eNOS genes, whith low requirement of genes related with proteasome intracellular complex. Importantly, the data were validated using classical chemical modulators of hypoxia signaling [chrysin (5,7-dihydroxyflavone) and Dimethyloxalylglycine (DMOG)] in functional assays. Altogether, these data validate the hypothesis that hipoxya is important to maintain the phenotype of endothelial cells, and it is properly interesting during the tissue regeneration surrounding implants and so compromising osseointegration process. Finally, it is important to mention that the cobalt released from CoCr devices might contribute with an sufficient microenvironment surrounding implanted devices and it paviments new roads looking for more bioactive surfaces of implantable materials in human health.


Assuntos
Cromo , Células Endoteliais , Humanos , Cromo/química , Cobalto/farmacologia , Cobalto/química , Transdução de Sinais
6.
Biometals ; 36(5): 1081-1108, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37209221

RESUMO

Bacillus toyonensis SFC 500-1E is a member of the consortium SFC 500-1 able to remove Cr(VI) and simultaneously tolerate high phenol concentrations. In order to elucidate mechanisms utilized by this strain during the bioremediation process, the differential expression pattern of proteins was analyzed when it grew with or without Cr(VI) (10 mg/L) and Cr(VI) + phenol (10 and 300 mg/L), through two complementary proteomic approaches: gel-based (Gel-LC) and gel-free (shotgun) nanoUHPLC-ESI-MS/MS. A total of 400 differentially expressed proteins were identified, out of which 152 proteins were down-regulated under Cr(VI) and 205 up-regulated in the presence of Cr(VI) + phenol, suggesting the extra effort made by the strain to adapt itself and keep growing when phenol was also added. The major metabolic pathways affected include carbohydrate and energetic metabolism, followed by lipid and amino acid metabolism. Particularly interesting were also ABC transporters and the iron-siderophore transporter as well as transcriptional regulators that can bind metals. Stress-associated global response involving the expression of thioredoxins, SOS response, and chaperones appears to be crucial for the survival of this strain under treatment with both contaminants. This research not only provided a deeper understanding of B. toyonensis SFC 500-1E metabolic role in Cr(VI) and phenol bioremediation process but also allowed us to complete an overview of the consortium SFC 500-1 behavior. This may contribute to an improvement in its use as a bioremediation strategy and also provides a baseline for further research.


Assuntos
Fenol , Proteômica , Biodegradação Ambiental , Cromo/química , Fenol/química , Fenol/metabolismo , Fenóis , Espectrometria de Massas em Tandem
7.
Environ Sci Pollut Res Int ; 30(49): 106982-106995, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36350452

RESUMO

The tannery industries have become an important part of societal growth; however, these processes have produced huge volumes of effluents containing heavy metals, particularly Cr(VI) oxyanions. The study is crucial and cost-effective for reducing the chromium (VI) from industrial wastewater. In order to meet the sustainable development goal (SDG) objective 6.3, the capacity of Sambucus nigra L. to adsorb heavy metal is established with the purpose of eradicating hazardous chemical contamination and reducing pollution. In this study, discontinuous tests were carried out to determine the efficiency of Cr(VI) sorption on leaves of Sambucus nigra L. Adsorption factors such as pH, temperature, adsorbent dosage, and contact time were evaluated. At a dosage of 3 g/L and pH 2, an efficiency of 98.22% was achieved under favorable conditions. The equilibrium and kinetic models that best fitted the experimental data are non-linear Freundlich and; pseudo-second order, and intra-particle diffusion, respectively. The thermodynamic parameters of the adsorption process, including Gibbs free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0), were measured at 291, 303, 323, and 343 K, indicating that the phenomena was spontaneous and endothermic. The chemical analyses and surface morphology of the adsorbent were analyzed using SEM (scanning electron microscopy), EDS (energy dispersive spectroscopy), FTIR (Fourier transform infra-red), XRD (X-ray diffraction), and ICP-OES (inductively coupled plasma optical-emission spectroscopy) techniques. The results showed that Sambucus nigra L. has a significant removal efficiency of Cr(VI) in the contaminated solutions, establishing adsorbent as a low cost, readily available, and environmentally friendly and ensuring its potential for industrial usage.


Assuntos
Metais Pesados , Sambucus nigra , Poluentes Químicos da Água , Biomassa , Cromo/química , Termodinâmica , Água , Íons , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
8.
Environ Sci Pollut Res Int ; 30(4): 8822-8834, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35809173

RESUMO

Biosorption is a viable and environmentally friendly process to remove pollutants and species of commercial interest. Biological materials are employed as adsorbents for the retention, removal, or recovery of potentially toxic metals from aqueous matrices. Hexavalent chromium is a potential contaminant commonly used in galvanoplasty and exhibits concerning effects on humans and the environment. The present work used in natura lettuce root (LR) and nanomodified lettuce root (LR-NP) for Cr(VI) adsorption from water medium. The nanomodification was performed by coprecipitation of magnetite nanoparticles on LR. All materials were morphologically and chemically characterized. The conditions used in removing Cr(VI) were determined by evaluating the pH at the point of zero charge (pHPZC = 5.96 and 6.50 for LR and LR-NP, respectively), pH, kinetics, and sorption capacity in batch procedures. The maximum sorption capacity of these materials was reached at pH 1.0 and 30 min of adsorbent-adsorbate contact time. The pseudo-second-order kinetic equation provided the best adjustments with r2 0.9982 and 0.9812 for LR and LR-NP, respectively. Experimental sorption capacity (Qexp) results were 4.51 ± 0.04 mg/g, 2.48 ± 0.57 mg/g, and 3.84 ± 0.08 mg/g for LR, NP, and LR-NP, respectively, at a 10 g/L adsorbent dose. Six isothermal models (Langmuir, Freundlich, Sips, Temkin, DR, and Hill) fit the experimental data to describe the adsorption process. Freundlich best fit the experimental data suggesting physisorption. Despite showing slightly lower Qexp than LR, LR-NP provides a feasible manner to remove the Cr(VI)-containing biosorbent from the medium after sorption given its magnetic characteristic.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Água/química , Lactuca , Hidroponia , Poluentes Químicos da Água/análise , Cromo/química , Adsorção , Cinética , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
9.
J. oral res. (Impresa) ; 11(5): 1-12, nov. 23, 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1435341

RESUMO

In Purpose: The fabrication technique can influence the mechanical properties of Cobalt-Chromium (Co-Cr) dental alloys. Hence, the present study aims to determine the corrosion resistance and thermal expansion of alloys manufactured using three contemporary techniques. Material and Methods: A total of nine specimens of Co-Cr alloy were prepared according to ISO 22674 by each one of the three manufacturing processes (three in each process); conventional casting, direct metal laser sintering (DMLS) and milling (MIL). All these specimens were tested for coefficient of thermal expansion and corrosion resistance. The data was tabulated and analyzed statistically. Results: The difference in the thermal expansion of alloys fabricated using three techniques was non-significant at almost all the temperatures from 50 ºC to 950 ºC (p>0.05), except 450 ºC and 600 °C. The polarization resistance of specimens manufactured using the conventional method was more compared to DMLS and MIL at pH 5 (Conventional>MIL>DMLS) (p<0.001). Conclusion: The thermal expansion behavior of alloys manufactured using the three selected techniques were similar, whereas, at acidic pH, the corrosion resistance of conventional and MIL were better than the DMLS.


Antecedentes: La técnica de fabricación puede influir en las propiedades mecánicas de las aleaciones dentales de cobalto-cromo (Co-Cr). Por lo tanto, el presente estudio tiene como objetivo determinar la resistencia a la corrosión y la expansión térmica de aleaciones fabricadas con tres técnicas contemporáneas. Material y Métodos: Se prepararon un total de nueve probetas de aleación de Co-Cr según ISO 22674 por cada uno de los tres procesos de fabricación (tres en cada proceso); fundición convencional, sinterización directa de metal por láser (DMLS) y fresado (MIL). Todos estos especímenes fueron probados para determinar el coeficiente de expansión térmica y la resistencia a la corrosión. Los datos fueron tabulados y analizados estadísticamente. Resultados: La diferencia en la dilatación térmica de las aleaciones fabricadas con las tres técnicas no fue significativa en casi todas las temperaturas desde 50ºC hasta 950ºC (p>0,05), excepto 450ºC y 600ºC. La resistencia a la polarización de las muestras fabricadas con el método convencional fue mayor en comparación con DMLS y MIL a pH 5 (Convencional>MIL>DMLS) (p<0, 0 01). Conclusión: El comportamiento de expansión térmica de las aleaciones fabricadas con las tres técnicas seleccionadas fue similar, mientras que, a pH ácido, la resistencia a la corrosión de la convencional y la MIL fue mejor que la de la DMLS.


Assuntos
Humanos , Temperatura , Ligas de Cromo , Corrosão , Ligas Dentárias , Propriedades de Superfície , Técnicas In Vitro , Cromo/química , Cobalto/química , Lasers
10.
Environ Pollut ; 312: 120084, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057328

RESUMO

Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.


Assuntos
Cromatos , Poluentes Ambientais , Cromatos/metabolismo , Cromo/química , Cisteína/metabolismo , Cisteína/farmacologia , Poluentes Ambientais/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Glutamatos/metabolismo , Glutamatos/farmacologia , Hormese , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Prolina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA