Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Genet Genomics ; 299(1): 79, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162841

RESUMO

The purpose of this study was to analyze and molecularly describe the largest group of patients with ABCA4-associated retinal degeneration in Latin America. Pathogenic variants in ABCA4, a member of the ATP Binding Cassette (ABC) transporters superfamily, is one of the most common causes of inherited visual deficiency in humans. Retinal phenotypes associated with genetic defects in ABCA4 are collectively known as ABCA4-associated retinal degenerations (ABCA4R), a group of recessively inherited disorders associated with a high allelic heterogeneity. While large groups of Caucasian and Asiatic individuals suffering from ABCA4R have been well characterized, molecular information from certain ethnic groups is limited or unavailable, precluding a more realistic knowledge of ABCA4-related mutational profile worldwide. In this study, we describe the molecular findings of a large group of 211 ABCA4R index cases from Mexico. Genotyping was performed using either next generation sequencing (NGS) of a retinal dystrophy genes panel or exome. ABCA4 targeted mutation testing was applied to a subgroup of subjects in whom founder mutations were suspected. A total of 128 different ABCA4 pathogenic variants were identified, including 22 previously unpublished variants. The most common type of genetic variation was single nucleotide substitutions which occurred in 92.7% (408/440 alleles). According to the predicted protein effect, the most frequent variant type was missense, occurring in 83.5% of disease-causing alleles (368/440). Mutations such as p.Ala1773Val are fully demonstrated as a founder effect in native inhabitants of certain regions of Mexico. This study also gives us certain indications of other founder effects that need to be further studied in the near future. This is the largest molecularly characterized ABCA4R Latin American cohort, and our results supports the value of conducting genetic screening in underrepresented populations for a better knowledge of the mutational profile leading to monogenic diseases.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Genótipo , Degeneração Retiniana , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , México , Masculino , Feminino , Degeneração Retiniana/genética , Criança , Mutação , Adulto , Adolescente , Pessoa de Meia-Idade , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Fenótipo , Pré-Escolar , Adulto Jovem , Linhagem
2.
Stem Cell Rev Rep ; 20(3): 722-737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38319527

RESUMO

Inherited and non-inherited retinopathies can affect distinct cell types, leading to progressive cell death and visual loss. In the last years, new approaches have indicated exciting opportunities to treat retinopathies. Cell therapy in retinitis pigmentosa, age-related macular disease, and glaucoma have yielded encouraging results in rodents and humans. The first two diseases mainly impact the photoreceptors and the retinal pigmented epithelium, while glaucoma primarily affects the ganglion cell layer. Induced pluripotent stem cells and multipotent stem cells can be differentiated in vitro to obtain specific cell types for use in transplant as well as to assess the impact of candidate molecules aimed at treating retinal degeneration. Moreover, stem cell therapy is presented in combination with newly developed methods, such as gene editing, Müller cells dedifferentiation, sheet & drug delivery, virus-like particles, optogenetics, and 3D bioprinting. This review describes the recent advances in this field, by presenting an updated panel based on cell transplants and related therapies to treat retinopathies.


Assuntos
Bioimpressão , Glaucoma , Transplante de Células-Tronco Hematopoéticas , Degeneração Retiniana , Humanos , Edição de Genes/métodos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Transplante de Células-Tronco/métodos
3.
Vet Ophthalmol ; 26(6): 532-547, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36872573

RESUMO

OBJECTIVE: To describe the clinical, preliminary electroretinographic and optical coherence tomography features of a newly identified form of progressive retinal atrophy (PRA) in German Spitzes, and identify the causal gene mutation. ANIMALS: Thirty-three client-owned German Spitz dogs were included. PROCEDURES: All animals underwent a full ophthalmic examination, including vision testing. In addition, fundus photography, ERG, and OCT were performed. A DNA-marker-based association analysis was performed to screen potential candidate genes and the whole genomes of four animals were sequenced. RESULTS: Initial fundus changes were pale papilla and mild vascular attenuation. Oscillatory nystagmus was noted in 14 of 16 clinically affected puppies. Vision was impaired under both scotopic and photopic conditions. Rod-mediated ERGs were unrecordable in all affected dogs tested, reduced cone-mediated responses were present in one animal at 3 months of age and unrecordable in the other affected animals tested. Multiple small retinal bullae were observed in three clinically affected animals (two with confirmed genetic diagnosis). OCT showed that despite loss of function, retinal structure was initially well-preserved, although a slight retinal thinning developed in older animals with the ventral retina being more severely affected. Pedigree analysis supported an autosomal recessive inheritance. A mutation was identified in GUCY2D, which segregated with the disease (NM_001003207.1:c.1598_1599insT; p.(Ser534GlufsTer20)). Human subjects with GUCY2D mutations typically show an initial disconnect between loss of function and loss of structure, a feature recapitulated in the affected dogs in this study. CONCLUSION: We identified early-onset PRA in the German Spitz associated with a frameshift mutation in GUCY2D.


Assuntos
Doenças do Cão , Degeneração Retiniana , Cães , Humanos , Animais , Mutação da Fase de Leitura , Degeneração Retiniana/genética , Degeneração Retiniana/veterinária , Degeneração Retiniana/diagnóstico , Retina/patologia , Células Fotorreceptoras Retinianas Cones , Eletrorretinografia/veterinária , Mutação , Tomografia de Coerência Óptica/veterinária , Atrofia/patologia , Atrofia/veterinária , Linhagem , Doenças do Cão/genética , Doenças do Cão/patologia
4.
J Pediatr ; 252: 93-100, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067876

RESUMO

OBJECTIVE: To describe the clinical presentation and long-term clinical features of a molecularly confirmed cohort with Cohen syndrome. STUDY DESIGN: Twelve patients with Cohen syndrome aged 0.2-13.9 years from 8 families with a median follow-up of 7 years were enrolled to the study. Genetic analyses were made by VPS13B and whole-exome sequencing analyses. RESULTS: Biallelic VPS13B variants, including 3 nonsense, 1 frameshift, and 1 splice-site variant, and a multiexon deletion were detected. Prader-Willi syndrome-like features such as hypotonia, small hands, round face with full cheeks, almond-shaped eyes, and micrognathia were observed in all infantile patients. Beginning from age 4 years, it was noticed that the face gradually elongated and became oval. The typical facial features of Cohen syndrome such as a long face, beak-shaped nose, and open-mouth appearance with prominent upper central incisors became evident at age 9. Other Cohen syndrome features including retinopathy (11/11), neutropenia (11/12), truncal obesity (5/12), and myopia (5/11) were detected at the median ages of 7.8, 7, 7.5, and 5 years, respectively. Eleven patients aged older than 5 years at their last examination had severe speech delay. CONCLUSIONS: A differential diagnosis of Cohen syndrome in the infancy should be made with Prader-Willi syndrome, and that the typical facial features for Cohen syndrome is prominent at age 9 years, when retinopathy, neutropenia, and truncal obesity become evident. Moreover, adding the severe speech delay to the diagnostic criteria should be considered.


Assuntos
Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Microcefalia , Miopia , Neutropenia , Síndrome de Prader-Willi , Degeneração Retiniana , Humanos , Criança , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Proteínas de Transporte Vesicular/genética , Microcefalia/diagnóstico , Microcefalia/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Degeneração Retiniana/genética , Miopia/diagnóstico , Miopia/genética , Obesidade/diagnóstico , Obesidade/genética
5.
PLoS Genet ; 18(6): e1009896, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653384

RESUMO

CCDC28B (coiled-coil domain-containing protein 28B) was identified as a modifier in the ciliopathy Bardet-Biedl syndrome (BBS). Our previous work in cells and zebrafish showed that CCDC28B plays a role regulating cilia length in a mechanism that is not completely understood. Here we report the generation of a Ccdc28b mutant mouse using CRISPR/Cas9 (Ccdc28b mut). Depletion of CCDC28B resulted in a mild phenotype. Ccdc28b mut animals i) do not present clear structural cilia affectation, although we did observe mild defects in cilia density and cilia length in some tissues, ii) reproduce normally, and iii) do not develop retinal degeneration or obesity, two hallmark features of reported BBS murine models. In contrast, Ccdc28b mut mice did show clear social interaction defects as well as stereotypical behaviors. This finding is indeed relevant regarding CCDC28B as a modifier of BBS since behavioral phenotypes have been documented in BBS. Overall, this work reports a novel mouse model that will be key to continue evaluating genetic interactions in BBS, deciphering the contribution of CCDC28B to modulate the presentation of BBS phenotypes. In addition, our data underscores a novel link between CCDC28B and behavioral defects, providing a novel opportunity to further our understanding of the genetic, cellular, and molecular basis of these complex phenotypes.


Assuntos
Síndrome de Bardet-Biedl , Degeneração Retiniana , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Cílios/metabolismo , Camundongos , Fenótipo , Degeneração Retiniana/genética , Peixe-Zebra/genética
6.
PLoS Genet ; 17(10): e1009848, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662339

RESUMO

Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.


Assuntos
Etnicidade/genética , Degeneração Retiniana/genética , Consanguinidade , Análise Mutacional de DNA/métodos , Exoma/genética , Proteínas do Olho/genética , Feminino , Estudos de Associação Genética/métodos , Ligação Genética/genética , Genótipo , Humanos , Masculino , México , Mutação/genética , Paquistão , Linhagem , Retina/patologia , Sequenciamento do Exoma/métodos , Sequenciamento Completo do Genoma/métodos
7.
J Physiol ; 599(2): 593-608, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219695

RESUMO

KEY POINTS: Kir7.1 K+ channel expressed in retinal pigment epithelium is mutated in inherited retinal degeneration diseases. We study Kir7.1 in heterologous expression to test the hypothesis that pathological R162 mutation to neutral amino acids results in loss of a crucial site that binds PI(4,5)P2 . Although R162W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. In addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and is essential for channel activity. R162 substitution with a large, neutral side chain like Trp exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in a cell expressing the same amount of mutant and wild-type channels. ABSTRACT: Mutations in the Kir7.1 K+ channel, highly expressed in retinal pigment epithelium, have been linked to inherited retinal degeneration diseases. Examples are mutations changing Arg 162 to Trp in snowflake vitreoretinal degeneration (SVD) and Gln in retinitis pigmentosa. R162 is believed to be part of a site that binds PI(4,5)P2 and stabilises the open state. We have tested the hypothesis that R162 mutation to neutral amino acids will result in the loss of this crucial interaction to the detriment of channel function. Our findings indicate that although R612W mutation inactivates Kir7.1, changes to smaller volume (e.g. Gln) amino acids are tolerated or even enhance function (Ala or Cys). Cys chemical modification of Kir7.1-R162C confirms that large residues of the size of Trp are incompatible with normal channel function even if positively charged. Experiments titrating the levels of plasma membrane PI(4,5)P2 with voltage-dependent phosphatase DrVSP reveal that, in addition to R162, K164 (and possibly K159) forms a binding site for the phosphoinositide and ensures channel activity. Finally, the use of a concatemeric approach shows that substitution of R162 with a large, neutral side chain mimicking a Trp residue exerts a dominant negative effect on Kir7.1 activity such that less than one fifth of the full activity is expected in heterozygous cells carrying the SVD mutation. Our results suggest that if mutations in the human KCNJ13 gene resulting in the neutralisation of R162 and Kir7.1 malfunction led to retinal degeneration diseases, their severity might depend on the nature of the side chain of the replacing amino acid.


Assuntos
Degeneração Retiniana , Membrana Celular , Humanos , Mutação , Fosfatidilinositóis , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina
8.
Am J Med Genet A ; 182(10): 2239-2242, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32700429

RESUMO

Knobloch Syndrome (KS) is a rare autosomal recessive hereditary disease. Despite its clinical heterogeneity, it is characterized by vitreoretinal degeneration and high myopia, with or without occipital skull defects. It is caused by mutations in the COL18A1 gene, which codifies for collagen XVIII, present in retina and vascular endothelium. Since the first description of the disease by doctors Knobloch and Layer in 1972, over 100 cases and 20 pathogenic or likely pathogenic mutations have been reported. We present the case of a child born from a consanguineous couple in Chile with congenital high myopia and dysmorphisms without an occipital skull defect. Whole exome sequencing analysis revealed an inherited homozygous variant in COL18A1, c.4224_4225delinsC, p.Pro1411Leufs*35.


Assuntos
Colágeno Tipo XVIII/genética , Encefalocele/genética , Predisposição Genética para Doença , Degeneração Retiniana/genética , Descolamento Retiniano/congênito , Criança , Encefalocele/complicações , Encefalocele/patologia , Feminino , Humanos , Mutação , Degeneração Retiniana/complicações , Degeneração Retiniana/patologia , Descolamento Retiniano/complicações , Descolamento Retiniano/genética , Descolamento Retiniano/patologia , Sequenciamento do Exoma
9.
Arq. bras. oftalmol ; 82(5): 363-371, Sept.-Oct. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1019434

RESUMO

ABSTRACT Purpose: As a class of psychostimulant drugs, amphetamines are widely abused for their stimulant, euphoric, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Following the onset of these effects, 3,4 methylenedioxymethamphetamine produces persistent damage to dopamine and serotonin nerve terminals, resulting in long-lasting neurotoxicity. The purpose of this investigation was to assess the effects of treatment with low dose of methylenedioxymethamphetamine on retinal function of C57BL/6 mice and its underlying mechanisms. Methods: C57BL/6 mice were divided randomly into two groups (n=10): one group was treated with phosphate buffered saline by intraperitoneal injection daily; the other group was treated with 1 mg/kg methylenedioxymethamphetamine by intraperitoneal injection daily for three months. Electroretinography was used to test retinal function every month. H&E staining and terminal deoxynucleotidyl transferase assay were used to evaluate the retinal morphology and histology. Enzyme-linked immunosorbent assay assays were used to measure markers of oxidative stress and inflammatory factors. Gene and protein expression was detected by real-time PCR and western blot. Results: Three-month treatment with methylenedioxymethamphetamine induced significant retinal dysfunction via photoreceptor cell apoptosis by oxidative stress and inflammatory responses. Conclusions: These results suggest that long-term treatment with methylenedioxymethamphetamine increases inflammatory responses in photoreceptor cells resulting in retinal dysfunction in C57BL/6 mice. Thus, this investigation provides preclinical rationale for the retina damage caused by the methylenedioxymethamphetamine abuse.


RESUMO Objetivos: Como uma classe de drogas psicoesti mulantes, as anfetaminas são amplamente usadas por suas propriedades estimulantes, eufóricas e alucinógenas. Muitos desses efeitos resultam de aumentos agudos na neurotransmissão da dopamina e da serotonina. Após o início desses efeitos, a 3,4-metilenedioximetanfetamina produz danos persistentes nos terminais nervosos de dopamina e serotonina, resultando em neurotoxicidade duradoura. O objetivo desta investigação foi avaliar os efeitos do tratamento baixa dose de metilenedioximetanfetamina na função da retina em camundongos C57BL/6 e seus mecanismos subjacentes. Métodos: Camundongos C57BL/6 foram divididos aleatoriamente em dois grupos (n=10): um grupo foi tratado com solução salina tamponada de fosfato por injeção intraperitoneal diária; o outro grupo foi tratado com 1 mg/kg de metilenedioximetanfetamina por injeção intraperitoneal diária durante 3 meses. Eletroretinografia foi utilizada para testar a função da retina a cada mês. A coloração H&E e análise com deoxinucleotidil terminal transferase foram utilizados para avaliar a morfologia e histologia da retina. Testes de imunoabsorção enzimática foram utilizados para medir marcadores de estresse oxidativo e fatores inflamatórios. A expressão de genes e proteínas foi detectada por PCR em tempo real e western blot. Resultados: O tratamento de três meses com metilenedioximetanfetamina induziu disfunção de retina significativa por apoptose de células fotorreceptoras por estresse oxidativo e resposta inflamatória. Conclusões: Estes resultados sugerem que o tratamento a longo prazo com metilenedioximetanfetamina aumenta as respostas inflamatórias em células fotorreceptoras, resultando em disfunção de retina em camundongos C57BL/6. Assim, a investigação foence uma justificação pré-clínica para os danos na retina causados pelo abuso de metilenedioximetanfetamina.


Assuntos
Animais , Ratos , Degeneração Retiniana/tratamento farmacológico , Traumatismos Oculares/tratamento farmacológico , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Degeneração Retiniana/genética , Traumatismos Oculares/genética , Western Blotting , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Eletrorretinografia , Camundongos Endogâmicos C57BL
10.
Genet Med ; 21(12): 2734-2743, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31263216

RESUMO

PURPOSE: We observed four individuals in two unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature. The phenotype precisely matched that of an individual of Azorean descent published in 1986 by Liberfarb and coworkers. METHODS: Patients underwent specialized clinical examinations (including ophthalmological, audiological, orthopedic, radiological, and developmental assessment). Exome and targeted sequencing was performed on selected individuals. Minigene constructs were assessed by quantitative polymerase chain reaction (qPCR) and Sanger sequencing. RESULTS: Affected individuals shared a 3.36-Mb region of autozygosity on chromosome 22q12.2, including a 10-bp deletion (NM_014338.3:c.904-12_904-3delCTATCACCAC), immediately upstream of the last exon of the PISD (phosphatidylserine decarboxylase) gene. Sequencing of PISD from paraffin-embedded tissue from the 1986 case revealed the identical homozygous variant. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. CONCLUSION: We have identified the genetic etiology of the Liberfarb syndrome, affecting brain, eye, ear, bone, and connective tissue. Our work documents the migration of a rare Portuguese founder variant to two continents and highlights the link between phospholipid metabolism and bone formation, sensory defects, and cerebral development, while raising the possibility of therapeutic phospholipid replacement.


Assuntos
Carboxiliases/genética , Carboxiliases/metabolismo , Adolescente , Adulto , Brasil , Exoma/genética , Feminino , Genótipo , Células HEK293 , Perda Auditiva Neurossensorial/genética , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Anormalidades Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Linhagem , Fenótipo , Portugal , Degeneração Retiniana/genética , Síndrome , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA