Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Sci Adv ; 10(26): eadl1049, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924416

RESUMO

A long-standing goal of evolutionary biology is to decode how changes in gene regulatory networks contribute to human-specific traits. Human accelerated regions (HARs) are prime candidates for driving gene regulatory modifications in human development. The RBFOX1 locus is densely populated with HARs, providing a set of potential regulatory elements that could have changed its expression in the human lineage. Here, we examined the role of RBFOX1-HARs using transgenic zebrafish reporter assays and identified 15 transcriptional enhancers that are active in the developing nervous system, 9 of which displayed differential activity between the human and chimpanzee sequences. The engineered loss of two selected RBFOX1-HARs in knockout mouse models modified Rbfox1 expression at specific developmental stages and tissues in the brain, influencing the expression and splicing of a high number of Rbfox1 target genes. Our results provided insight into the spatial and temporal changes in gene expression driven by RBFOX1-HARs.


Assuntos
Elementos Facilitadores Genéticos , Evolução Molecular , Fatores de Processamento de RNA , Peixe-Zebra , Humanos , Animais , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Peixe-Zebra/genética , Camundongos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Animais Geneticamente Modificados , Redes Reguladoras de Genes , Pan troglodytes/genética , Loci Gênicos
2.
Genes (Basel) ; 15(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790178

RESUMO

Recent evidence suggests that human gene promoters display gene expression regulatory mechanisms beyond the typical single gene local transcription modulation. In mammalian genomes, genes with an associated bidirectional promoter are abundant; bidirectional promoter architecture serves as a regulatory hub for a gene pair expression. However, it has been suggested that its contribution to transcriptional regulation might exceed local transcription initiation modulation. Despite their abundance, the functional consequences of bidirectional promoter architecture remain largely unexplored. This work studies the long-range gene expression regulatory role of a long non-coding RNA gene promoter using chromosome conformation capture methods. We found that this particular bidirectional promoter contributes to distal gene expression regulation in a target-specific manner by establishing promoter-promoter interactions. In particular, we validated that the promoter-promoter interactions of this regulatory element with the promoter of distal gene BBX contribute to modulating the transcription rate of this gene; removing the bidirectional promoter from its genomic context leads to a rearrangement of BBX promoter-enhancer interactions and to increased gene expression. Moreover, long-range regulatory functionality is not directly dependent on its associated non-coding gene pair expression levels.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Regulação da Expressão Gênica/genética , Transcrição Gênica , Elementos Facilitadores Genéticos
3.
Breast Cancer Res Treat ; 207(1): 91-101, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702584

RESUMO

PURPOSE: Inhibitor of differentiation 4 (ID4) is a dominant-negative regulator of basic helix-loop-helix (bHLH) transcription factors. The expression of ID4 is dysregulated in various breast cancer subtypes, indicating a potential role for ID4 in subtype-specific breast cancer development. This study aims to elucidate the epigenetic regulation of ID4 within breast cancer subtypes, with a particular focus on DNA methylation and chromatin accessibility. METHODS: Bioinformatic analyses were conducted to assess DNA methylation and chromatin accessibility in ID4 regulatory regions across breast cancer subtypes. Gene Set Enrichment Analysis (GSEA) was conducted to identify related gene sets. Transcription factor binding within ID4 enhancer and promoter regions was explored. In vitro experiments involved ER+ breast cancer cell lines treated with estradiol (E2) and Tamoxifen. RESULTS: Distinct epigenetic profiles of ID4 were observed, revealing increased methylation and reduced chromatin accessibility in luminal subtypes compared to the basal subtype. Gene Set Enrichment Analysis (GSEA) implicated estrogen-related pathways, suggesting a potential link between estrogen signaling and the regulation of ID4 expression. Transcription factor analysis identified ER and FOXA1 as regulators of ID4 enhancer regions. In vitro experiments confirmed the role of ER, demonstrating reduced ID4 expression and increased methylation with estradiol treatment. Conversely, Tamoxifen treatment increased ID4 expression, indicating the potential involvement of ER signaling through ERα in the epigenetic regulation of ID4 in breast cancer cells. CONCLUSION: This study shows the intricate epigenetic regulation of ID4 in breast cancer, highlighting subtype-specific differences in DNA methylation and chromatin accessibility.


Assuntos
Neoplasias da Mama , Cromatina , Biologia Computacional , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito , Proteínas Inibidoras de Diferenciação , Regiões Promotoras Genéticas , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Biologia Computacional/métodos , Cromatina/metabolismo , Cromatina/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Linhagem Celular Tumoral , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Elementos Facilitadores Genéticos , Estradiol/farmacologia
4.
Proc Natl Acad Sci U S A ; 121(18): e2322692121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652744

RESUMO

Food intake and energy balance are tightly regulated by a group of hypothalamic arcuate neurons expressing the proopiomelanocortin (POMC) gene. In mammals, arcuate-specific POMC expression is driven by two cis-acting transcriptional enhancers known as nPE1 and nPE2. Because mutant mice lacking these two enhancers still showed hypothalamic Pomc mRNA, we searched for additional elements contributing to arcuate Pomc expression. By combining molecular evolution with reporter gene expression in transgenic zebrafish and mice, here, we identified a mammalian arcuate-specific Pomc enhancer that we named nPE3, carrying several binding sites also present in nPE1 and nPE2 for transcription factors known to activate neuronal Pomc expression, such as ISL1, NKX2.1, and ERα. We found that nPE3 originated in the lineage leading to placental mammals and remained under purifying selection in all mammalian orders, although it was lost in Simiiformes (monkeys, apes, and humans) following a unique segmental deletion event. Interestingly, ablation of nPE3 from the mouse genome led to a drastic reduction (>70%) in hypothalamic Pomc mRNA during development and only moderate (<33%) in adult mice. Comparison between double (nPE1 and nPE2) and triple (nPE1, nPE2, and nPE3) enhancer mutants revealed the relative contribution of nPE3 to hypothalamic Pomc expression and its importance in the control of food intake and adiposity in male and female mice. Altogether, these results demonstrate that nPE3 integrates a tripartite cluster of partially redundant enhancers that originated upon a triple convergent evolutionary process in mammals and that is critical for hypothalamic Pomc expression and body weight homeostasis.


Assuntos
Peso Corporal , Ingestão de Alimentos , Elementos Facilitadores Genéticos , Hipotálamo , Pró-Opiomelanocortina , Peixe-Zebra , Animais , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética , Camundongos , Hipotálamo/metabolismo , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Feminino , Masculino , Camundongos Transgênicos , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mamíferos/metabolismo , Mamíferos/genética
5.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364113

RESUMO

Evolutionary analyses have estimated that ∼60% of nucleotides in intergenic regions of the Drosophila melanogaster genome are functionally relevant, suggesting that regulatory information may be encoded more densely in intergenic regions than has been revealed by most functional dissections of regulatory DNA. Here, we approached this issue through a functional dissection of the regulatory region of the gene shavenbaby (svb). Most of the ∼90 kb of this large regulatory region is highly conserved in the genus Drosophila, though characterized enhancers occupy a small fraction of this region. By analyzing the regulation of svb in different contexts of Drosophila development, we found that the regulatory information that drives svb expression in the abdominal pupal epidermis is organized in a different way than the elements that drive svb expression in the embryonic epidermis. While in the embryonic epidermis svb is activated by compact enhancers separated by large inactive DNA regions, svb expression in the pupal epidermis is driven by regulatory information distributed over broader regions of svb cis-regulatory DNA. In the same vein, we observed that other developmental genes also display a dense distribution of putative regulatory elements in their regulatory regions. Furthermore, we found that a large percentage of conserved noncoding DNA of the Drosophila genome is contained within regions of open chromatin. These results suggest that part of the evolutionary constraint on noncoding DNA of Drosophila is explained by the density of regulatory information, which may be greater than previously appreciated.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , DNA , DNA Intergênico/genética , DNA Intergênico/metabolismo , Elementos Facilitadores Genéticos
6.
J Exp Biol ; 226(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078652

RESUMO

Scaling between specific organs and overall body size has long fascinated biologists, being a primary mechanism by which organ shapes evolve. Yet, the genetic mechanisms that underlie the evolution of scaling relationships remain elusive. Here, we compared wing and fore tibia lengths (the latter as a proxy of body size) in Drosophila melanogaster, Drosophila simulans, Drosophila ananassae and Drosophila virilis, and show that the first three of these species have roughly a similar wing-to-tibia scaling behavior. In contrast, D. virilis exhibits much smaller wings relative to their body size compared with the other species and this is reflected in the intercept of the wing-to-tibia allometry. We then asked whether the evolution of this relationship could be explained by changes in a specific cis-regulatory region or enhancer that drives expression of the wing selector gene, vestigial (vg), whose function is broadly conserved in insects and contributes to wing size. To test this hypothesis directly, we used CRISPR/Cas9 to replace the DNA sequence of the predicted Quadrant Enhancer (vgQE) from D. virilis for the corresponding vgQE sequence in the genome of D. melanogaster. Strikingly, we discovered that D. melanogaster flies carrying the D. virilis vgQE sequence have wings that are significantly smaller with respect to controls, partially shifting the intercept of the wing-to-tibia scaling relationship towards that observed in D. virilis. We conclude that a single cis-regulatory element in D. virilis contributes to constraining wing size in this species, supporting the hypothesis that scaling could evolve through genetic variations in cis-regulatory elements.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sequência de Bases , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Asas de Animais
7.
Science ; 379(6636): 1043-1049, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893249

RESUMO

Little is known about the extent to which species use homologous regulatory architectures to achieve phenotypic convergence. By characterizing chromatin accessibility and gene expression in developing wing tissues, we compared the regulatory architecture of convergence between a pair of mimetic butterfly species. Although a handful of color pattern genes are known to be involved in their convergence, our data suggest that different mutational paths underlie the integration of these genes into wing pattern development. This is supported by a large fraction of accessible chromatin being exclusive to each species, including the de novo lineage-specific evolution of a modular optix enhancer. These findings may be explained by a high level of developmental drift and evolutionary contingency that occurs during the independent evolution of mimicry.


Assuntos
Evolução Biológica , Mimetismo Biológico , Borboletas , Montagem e Desmontagem da Cromatina , Asas de Animais , Animais , Mimetismo Biológico/genética , Borboletas/anatomia & histologia , Borboletas/genética , Borboletas/crescimento & desenvolvimento , Pigmentação/genética , Asas de Animais/anatomia & histologia , Asas de Animais/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Elementos Facilitadores Genéticos
8.
Genome Biol Evol ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35552697

RESUMO

Enhancers are regulatory elements of genomes that determine spatio-temporal patterns of gene expression. The human genome contains a vast number of enhancers, which largely outnumber protein-coding genes. Historically, enhancers have been regarded as highly tissue-specific. However, recent evidence has demonstrated that many enhancers are pleiotropic, with activity in multiple developmental contexts. Yet, the extent and impact of pleiotropy remain largely unexplored. In this study we analyzed active enhancers across human organs based on the analysis of both eRNA transcription (FANTOM5 consortium data sets) and chromatin architecture (ENCODE consortium data sets). We show that pleiotropic enhancers are pervasive in the human genome and that most enhancers active in a particular organ are also active in other organs. In addition, our analysis suggests that the proportion of context-specific enhancers of a given organ is explained, at least in part, by the proportion of context-specific genes in that same organ. The notion that such a high proportion of human enhancers can be pleiotropic suggests that small regions of regulatory DNA contain abundant regulatory information and that these regions evolve under important evolutionary constraints.


Assuntos
Elementos Facilitadores Genéticos , Genoma Humano , Evolução Biológica , Cromatina/genética , Humanos
9.
Genome Biol ; 22(1): 162, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34099014

RESUMO

BACKGROUND: Circadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment. The molecular mechanisms controlling circadian gene transcription are still under investigation. In particular, how chromatin conformation at different genomic scales and regulatory elements impact rhythmic gene expression has been poorly characterized. RESULTS: Here we measure changes in the spatial chromatin conformation in mouse liver using genome-wide and promoter-capture Hi-C alongside daily oscillations in gene transcription. We find topologically associating domains harboring circadian genes that switch assignments between the transcriptionally active and inactive compartment at different hours of the day, while their boundaries stably maintain their structure over time. To study chromatin contacts of promoters at high resolution over time, we apply promoter capture Hi-C. We find circadian gene promoters displayed a maximal number of chromatin contacts at the time of their peak transcriptional output. Furthermore, circadian genes, as well as contacted and transcribed regulatory elements, reach maximal expression at the same timepoints. Anchor sites of circadian gene promoter loops are enriched in DNA binding sites for liver nuclear receptors and other transcription factors, some exclusively present in either rhythmic or stable contacts. Finally, by comparing the interaction profiles between core clock and output circadian genes, we show that core clock interactomes are more dynamic compared to output circadian genes. CONCLUSION: Our results identify chromatin conformation dynamics at different scales that parallel oscillatory gene expression and characterize the repertoire of regulatory elements that control circadian gene transcription through rhythmic or stable chromatin configurations.


Assuntos
Ritmo Circadiano/genética , Genoma , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Relógios Biológicos/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Genéticos , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA