Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pest Manag Sci ; 78(11): 4764-4773, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35904507

RESUMO

BACKGROUND: Eleusine indica (L.) Gaertn. (goosegrass) is a major weed in global cropping systems. It has evolved resistance to glyphosate due to single Pro-106-Ser (P106S) or double Thr-102-Ile + Pro-106-Ser (TIPS) EPSPS target site mutations. Here, experiments were conducted to evaluate the single effect of soybean competition and its combined effect with a glyphosate field dose (1080 g ae ha-1 ) on the growth and fitness of plants carrying these glyphosate resistance endowing target site mutations. RESULTS: TIPS E. indica plants are highly glyphosate-resistant but the double mutation endows a substantial fitness cost. The TIPS fitness penalty increased under the effect of soybean competition resulting in a cost of 95%, 95% and 96% in terms of, respectively, vegetative growth, seed mass and seed number investment. Glyphosate treatment of these glyphosate-resistant TIPS plants showed an increase in growth relative to those without glyphosate. Conversely, for the P106S moderate glyphosate resistance mutation, glyphosate treatment alone reduced survival rate, vegetative growth, aboveground biomass (34%), seed mass (48%) and number (52%) of P106S plants relative to the glyphosate nontreated plants. However, under the combined effects of both soybean competition and the field-recommended glyphosate dose, vegetative growth, aboveground biomass, seed mass and number of P106S and TIPS plants were substantially limited (by ≤99%). CONCLUSION: The ecological environment imposed by intense competition from a soybean crop sets a significant constraint for the landscape-level increase of both the E. indica single and double glyphosate resistance mutations in the agroecosystem and highlights the key role of crop competition in limiting the population growth of weeds, whether they are herbicide-resistant or susceptible. © 2022 Society of Chemical Industry.


Assuntos
Eleusine , Fabaceae , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Eleusine/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Glycine max/genética , Glifosato
2.
J Agric Food Chem ; 69(4): 1197-1205, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470815

RESUMO

The occurrence of multiple herbicide resistant weeds has increased considerably in glyphosate-resistant soybean fields in Brazil; however, the mechanisms governing this resistance have not been studied. In its study, the target-site and nontarget-site mechanisms were characterized in an Eleusine indica population (R-15) with multiple resistance to the acetyl-CoA carboxylase (ACCase) inhibitors, glyphosate, imazamox, and paraquat. Absorption and translocation rates of 14C-diclofop-methyl14C-imazamox and 14C-glyphosate of the R-15 population were similar to those of a susceptible (S-15) population; however, the R-15 population translocated ∼38% less 14C-paraquat to the rest of plant and roots than the S-15 population. Furthermore, the R-15 plants metabolized (by P450 cytochrome) 55% and 88% more diclofop-methyl (conjugate) and imazamox (imazamox-OH and conjugate), respectively, than the S-15 plants. In addition, the Pro-106-Ser mutation was found in the EPSPS gene of this population. This report describes the first characterization of the resistance mechanisms in a multiple herbicide resistant weed from Brazil.


Assuntos
Eleusine/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , Acetil-CoA Carboxilase/antagonistas & inibidores , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Brasil , Eleusine/enzimologia , Eleusine/genética , Inibidores Enzimáticos/farmacologia , Glicina/farmacologia , Imidazóis/farmacologia , Paraquat/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glifosato
3.
Electron. j. biotechnol ; 18(2): 77-82, Mar. 2015. ilus, tab
Artigo em Inglês | LILACS | ID: lil-745573

RESUMO

Background Genetic diversity of finger millet (Eleusine coracana), a nutritious neglected staple cereal in Africa and South Asia is largely uncharacterized. This study analysed 82 published SSR markers for finger millet across 10 diverse accessions to compile an informative set for genetic characterisation. Extensive optimization compared single samples with bulked leaf or bulked DNA samples for capturing within accession genetic diversity. The markers were evaluated to determine (1) how efficiently they amplified target loci during high-throughput genotyping with a generic PCR protocol, (2) ease of scoring PCR products and (3) polymorphism and ability to discern genetic diversity within the tested finger millet germplasm. Results Across 88 samples, the 52 markers that worked well amplified 274 alleles, ranging from 2 to 14 per locus with a mean of 4.89. Major allele frequency ranged from 0.18 to 0.93 with a mean of 0.57. Polymorphic Information Content (PIC) ranged from 0.13 to 0.88 with a mean of 0.5 and availability varied between 64 and 100% with a mean of 92.8%. Heterozygosity ranged from 0 to 1.0, with a mean of 0.26. Discussion Five individual samples from an accession captured the largest number of alleles per locus compared to the four different bulked sampling strategies but this difference was not significant. The identified set comprised 20 markers: UGEP24, UGEP53, UGEP84, UGEP27, UGEP98, UGEP95, UGEP64, UGEP33, UGEP67, UGEP106, UGEP110, UGEP57, UGEP96, UGEP66, UGEP46, UGEP79, UGEP20, UGEP12, UGEP73 and UGEP5 and was since used to assess East African finger millet genetic diversity in two separate studies.


Assuntos
Variação Genética , Repetições de Microssatélites , Eleusine/genética , Técnicas de Genotipagem , Filogenia , DNA/isolamento & purificação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA