Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Toxins (Basel) ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822608

RESUMO

Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.


Assuntos
Anticorpos Monoclonais/farmacologia , Síndrome Hemolítico-Urêmica/prevenção & controle , Fragmentos Fab das Imunoglobulinas/imunologia , Toxina Shiga II/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Apoptose/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Glomérulos Renais/citologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Proteínas Recombinantes , Toxina Shiga I/imunologia , Toxina Shiga I/toxicidade , Toxina Shiga II/toxicidade , Escherichia coli Shiga Toxigênica/imunologia , Células Vero
3.
Hum Vaccin Immunother ; 14(9): 2208-2213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29923791

RESUMO

Strains of Shiga toxin-producing Escherichia coli (STEC) can cause the severe Hemolytic Uremic Syndrome (HUS). Shiga toxins are protein toxins that bind and kill microvascular cells, damaging vital organs. No specific therapeutics or vaccines have been licensed for use in humans yet. The most common route of infection is by consumption of dairy or farm products contaminated with STEC. Domestic cattle colonized by STEC strains represent the main reservoir, and thus a source of contamination. Outer Membrane Vesicles (OMV) obtained after detergent treatment of gram-negative bacteria have been used over the past decades for producing many licensed vaccines. These nanoparticles are not only multi-antigenic in nature but also potent immunopotentiators and immunomodulators. Formulations based on chemical-inactivated OMV (OMVi) obtained from a virulent STEC strain (O157:H7 serotype) were found to protect against pathogenicity in a murine model and to be immunogenic in calves. These initial studies suggest that STEC-derived OMV has a potential for the formulation of both human and veterinary vaccines.


Assuntos
Doenças dos Bovinos/prevenção & controle , Micropartículas Derivadas de Células/imunologia , Infecções por Escherichia coli/veterinária , Vacinas contra Escherichia coli/imunologia , Escherichia coli Shiga Toxigênica/imunologia , Animais , Bovinos , Composição de Medicamentos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Vacinas contra Escherichia coli/administração & dosagem , Camundongos Endogâmicos BALB C , Modelos Animais
4.
Pediatr Nephrol ; 33(11): 2057-2071, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29372302

RESUMO

Hemolytic uremic syndrome (HUS) is defined as a triad of noninmune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The most frequent presentation is secondary to Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, which is termed postdiarrheal, epidemiologic or Stx-HUS, considering that Stx is the necessary etiological factor. After ingestion, STEC colonize the intestine and produce Stx, which translocates across the intestinal epithelium. Once Stx enters the bloodstream, it interacts with renal endothelial and epithelial cells, and leukocytes. This review summarizes the current evidence about the involvement of inflammatory components as central pathogenic factors that could determine outcome of STEC infections. Intestinal inflammation may favor epithelial leakage and subsequent passage of Stx to the systemic circulation. Vascular damage triggered by Stx promotes not only release of thrombin and increased fibrin concentration but also production of cytokines and chemokines by endothelial cells. Recent evidence from animal models and patients strongly indicate that several immune cells types may participate in HUS physiopathology: neutrophils, through release of proteases and reactive oxygen species (ROS); monocytes/macrophages through secretion of cytokines and chemokines. In addition, high levels of Bb factor and soluble C5b-9 (sC5b-9) in plasma as well as complement factors adhered to platelet-leukocyte complexes, microparticles and microvesicles, suggest activation of the alternative pathway of complement. Thus, acute immune response secondary to STEC infection, the Stx stimulatory effect on different immune cells, and inflammatory stimulus secondary to endothelial damage all together converge to define a strong inflammatory status that worsens Stx toxicity and disease.


Assuntos
Infecções por Escherichia coli/imunologia , Síndrome Hemolítico-Urêmica/imunologia , Microvasos/patologia , Escherichia coli Shiga Toxigênica/imunologia , Animais , Via Alternativa do Complemento/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/patologia , Humanos , Mucosa Intestinal/microbiologia , Rim/irrigação sanguínea , Rim/imunologia , Rim/patologia , Microvasos/citologia , Microvasos/imunologia , Escherichia coli Shiga Toxigênica/isolamento & purificação
5.
PLoS One ; 12(10): e0182452, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981517

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is the major etiologic agent of hemolytic-uremic syndrome (HUS). The high rate of HUS emphasizes the urgency for the implementation of primary prevention strategies to reduce its public health impact. Argentina shows the highest rate of HUS worldwide, being E. coli O157 the predominant STEC-associated HUS serogroup (>70%), followed by E. coli O145 (>9%). To specifically detect these serogroups we aimed at developing highly specific monoclonal antibodies (mAbs) against the O-polysaccharide (O-PS) section of the lipopolysaccharide (LPS) of the dominant STEC-associated HUS serogroups in Argentina. The development of hybridomas secreting mAbs against O157 or O145 was carried out through a combined immunization strategy, involving adjuvated-bacterial immunizations followed by immunizations with recombinant O-PS-protein conjugates. We selected hybridoma clones that specifically recognized the engineered O-PS-protein conjugates of O157 or O145 serogroups. Indirect ELISA of heat-killed bacteria showed specific binding to O157 or O145 serogroups, respectively, while no cross-reactivity with other epidemiological important STEC strains, Brucella abortus, Salmonella group N or Yersinia enterocolitica O9 was observed. Western blot analysis showed specific recognition of the sought O-PS section of the LPS by all mAbs. Finally, the ability of the developed mAbs to bind the surface of whole bacteria cells was confirmed by flow cytometry, confocal microscopy and agglutination assays, indicating that these mAbs present an exceptional degree of specificity and relative affinity in the detection and identification of E. coli O157 and O145 serogroups. These mAbs may be of significant value for clinical diagnosis and food quality control applications. Thus, engineered O-PS specific moieties contained in the recombinant glycoconjugates used for combined immunization and hybridoma selection are an invaluable resource for the development of highly specific mAbs.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/microbiologia , Escherichia coli Shiga Toxigênica/imunologia , Ensaio de Imunoadsorção Enzimática , Escherichia coli O157/imunologia , Hibridomas , Antígenos O/imunologia , Sorogrupo , Sorotipagem
6.
Epidemiol Infect ; 145(11): 2204-2211, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28587697

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is a known food pathogen, which main reservoir is the intestine of ruminants. The abundance of different STEC lineages in nature reflect a heterogeneity that is characterised by the differential expression of certain genotypic characteristics, which in turn are influenced by the environmental conditions to which the microorganism is exposed. Bacterial homeostasis and stress response are under the control of the alarmone guanosine tetraphosphate (ppGpp), which intrinsic levels varies across the E. coli species. In the present study, 50 STEC isolates from healthy sheep were evaluated regarding their ppGpp content, cytotoxicity and other relevant genetic and phenotypic characteristics. We found that the level of ppGpp and cytotoxicity varied considerably among the examined strains. Isolates that harboured the stx2 gene were the least cytotoxic and presented the highest levels of ppGpp. All stx2 isolates belonged to phylogroup A, while strains that carried stx1 or both stx1 and stx2 genes pertained to phylogroup B1. All but two stx2 isolates belonged to the stx2b subtype. Strains that belonged to phylogroup B1 displayed on average low levels of ppGpp and high cytotoxicity. Overall, there was a negative correlation between cytotoxicity and ppGpp.


Assuntos
Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Doenças dos Ovinos/microbiologia , Ovinos/microbiologia , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética , Animais , Reservatórios de Doenças , Infecções por Escherichia coli/microbiologia , Variação Genética , Doenças dos Ovinos/epidemiologia , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/imunologia , Escherichia coli Shiga Toxigênica/isolamento & purificação
7.
Toxicon ; 133: 58-62, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28454739

RESUMO

Cattle are considered a reservoir of Shiga toxin-producing Escherichia coli (STEC). There is no information about the presence of antibodies against Shiga toxins in Brazilian bovine serum. Using ELISA, all sera tested showed antibodies against the two main STEC virulence factors; Stx1 and Stx2. Neutralizing antibodies against Stx1 and/or Stx2 were detected in all but one serum. In conclusion, our results indicated that these animals had been exposed to STEC producing both toxins.


Assuntos
Anticorpos Antibacterianos/sangue , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Toxinas Shiga/imunologia , Escherichia coli Shiga Toxigênica/imunologia , Animais , Brasil/epidemiologia , Bovinos , Reservatórios de Doenças/veterinária , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Sorotipagem
8.
PLoS One ; 10(3): e0120481, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790467

RESUMO

BACKGROUND: Stx toxin is a member of the AB5 family of bacterial toxins: the active A subunit has N-glycosidase activity against 28S rRNA, resulting in inhibition of protein synthesis in eukaryotic cells, and the pentamer ligand B subunits (StxB) bind to globotria(tetra)osylceramide receptors (Gb3/Gb4) on the cell membrane. Shiga toxin-producing Escherichia coli strains (STEC) may produce Stx1 and/or Stx2 and variants. Strains carrying Stx2 are considered more virulent and related to the majority of outbreaks, besides being usually associated with hemolytic uremic syndrome in humans. The development of tools for the detection and/or neutralization of these toxins is a turning point for early diagnosis and therapeutics. Antibodies are an excellent paradigm for the design of high-affinity, protein-based binding reagents used for these purposes. METHODS AND FINDINGS: In this work, we developed two recombinant antibodies; scFv fragments from mouse hybridomas and Fab fragments by phage display technology using a human synthetic antibody library. Both fragments showed high binding affinity to Stx2, and they were able to bind specifically to the GKIEFSKYNEDDTF region of the Stx2 B subunit and to neutralize in vitro the cytotoxicity of the toxin up to 80%. Furthermore, the scFv fragments showed 79% sensitivity and 100% specificity in detecting STEC strains by ELISA. CONCLUSION: In this work, we developed and characterized two recombinant antibodies against Stx2, as promising tools to be used in diagnosis or therapeutic approaches against STEC, and for the first time, we showed a human monovalent molecule, produced in bacteria, able to neutralize the cytotoxicity of Stx2 in vitro.


Assuntos
Anticorpos Neutralizantes/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Toxina Shiga II/antagonistas & inibidores , Escherichia coli Shiga Toxigênica/metabolismo , Anticorpos de Cadeia Única/metabolismo , Animais , Linhagem Celular , Humanos , Hibridomas/imunologia , Camundongos , Biblioteca de Peptídeos , Sensibilidade e Especificidade , Escherichia coli Shiga Toxigênica/imunologia , Anticorpos de Cadeia Única/genética
9.
Vet Microbiol ; 175(1): 150-6, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25465174

RESUMO

Sheep constitute an important source of zoonotic pathogens as Shiga toxin-producing Escherichia coli (STEC). In this study, the prevalence, serotypes and virulence profiles of STEC were investigated among 130 healthy sheep from small and medium farms in southern Brazil. STEC was isolated from 65 (50%) of the tested animals and detected in all flocks. A total of 70 STEC isolates were characterized, and belonged to 23 different O:H serotypes, many of which associated with human disease, including hemolytic-uremic syndrome (HUS). Among the serotypes identified, O76:H19 and O65:H- were the most common, and O75:H14 and O169:H7 have not been previously reported in STEC strains. Most of the STEC isolates harbored only stx1, whereas the Stx2b subtype was the most common among those carrying stx2. Enterohemolysin (ehxA) and intimin (eae) genes were detected in 61 (87.1%) and four (5.7%) isolates, respectively. Genes encoding putative adhesins (saa, iha, lpfO113) and toxins (subAB and cdtV) were also observed. The majority of the isolates displayed virulence features related to pathogenesis of STEC, such as adherence to epithelial cells, high cytotoxicity and enterohemolytic activity. Ovine STEC isolates belonged mostly to phylogenetic group B1. PFGE revealed particular clones distributed in some farms, as well as variations in the degree of genetic similarity within serotypes examined. In conclusion, STEC are widely distributed in southern Brazilian sheep, and belonged mainly to serotypes that are not commonly reported in other regions, such as O76:H19 and O65:H-. A geographical variation in the distribution of STEC serotypes seems to occur in sheep.


Assuntos
Infecções por Escherichia coli/veterinária , Doenças dos Ovinos/epidemiologia , Ovinos/microbiologia , Escherichia coli Shiga Toxigênica/genética , Fatores de Virulência/genética , Animais , Brasil/epidemiologia , Reservatórios de Doenças , Eletroforese em Gel de Campo Pulsado/veterinária , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Variação Genética , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Reação em Cadeia da Polimerase Multiplex/veterinária , Fenótipo , Filogenia , Prevalência , Sorotipagem , Doenças dos Ovinos/microbiologia , Toxinas Shiga/metabolismo , Escherichia coli Shiga Toxigênica/imunologia , Escherichia coli Shiga Toxigênica/isolamento & purificação
10.
J Clin Microbiol ; 53(2): 528-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25472487

RESUMO

Human infection with Shiga toxin-producing Escherichia coli (STEC) is a major cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening condition characterized by hemolytic anemia, thrombocytopenia, and acute renal failure. E. coli O157:H7 is the dominant STEC serotype associated with HUS worldwide, although non-O157 STEC serogroups can cause a similar disease. The detection of anti-O157 E. coli lipopolysaccharide (LPS) antibodies in combination with stool culture and detection of free fecal Shiga toxin considerably improves the diagnosis of STEC infections. In the present study, we exploited a bacterial glycoengineering technology to develop recombinant glycoproteins consisting of the O157, O145, or O121 polysaccharide attached to a carrier protein as serogroup-specific antigens for the serological diagnosis of STEC-associated HUS. Our results demonstrate that using these antigens in indirect ELISAs (glyco-iELISAs), it is possible to clearly discriminate between STEC O157-, O145-, and O121-infected patients and healthy children, as well as to confirm the diagnosis in HUS patients for whom the classical diagnostic procedures failed. Interestingly, a specific IgM response was detected in almost all the analyzed samples, indicating that it is possible to detect the infection in the early stages of the disease. Additionally, in all the culture-positive HUS patients, the serotype identified by glyco-iELISAs was in accordance with the serotype of the isolated strain, indicating that these antigens are valuable not only for diagnosing HUS caused by the O157, O145, and O121 serogroups but also for serotyping and guiding the subsequent steps to confirm diagnosis.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Glicoproteínas/imunologia , Síndrome Hemolítico-Urêmica/diagnóstico , Sorotipagem/métodos , Escherichia coli Shiga Toxigênica/imunologia , Antígenos de Bactérias/genética , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteínas/genética , Humanos , Imunoglobulina M/sangue , Lactente , Recém-Nascido , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Estudos Retrospectivos , Método Simples-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA