Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000504

RESUMO

HER2-targeted therapies, such as Trastuzumab (Tz), have significantly improved the clinical outcomes for patients with HER2+ breast cancer (BC). However, treatment resistance remains a major obstacle. To elucidate functional and metabolic changes associated with acquired resistance, we characterized protein profiles of BC Tz-responder spheroids (RSs) and non-responder spheroids (nRSs) by a proteomic approach. Three-dimensional cultures were generated from the HER2+ human mammary adenocarcinoma cell line BT-474 and a derived resistant cell line. Before and after a 15-day Tz treatment, samples of each condition were collected and analyzed by liquid chromatography-mass spectrometry. The analysis of differentially expressed proteins exhibited the deregulation of energetic metabolism and mitochondrial pathways. A down-regulation of carbohydrate metabolism and up-regulation of mitochondria organization proteins, the tricarboxylic acid cycle, and oxidative phosphorylation, were observed in nRSs. Of note, Complex I-related proteins were increased in this condition and the inhibition by metformin highlighted that their activity is necessary for nRS survival. Furthermore, a correlation analysis showed that overexpression of Complex I proteins NDUFA10 and NDUFS2 was associated with high clinical risk and worse survival for HER2+ BC patients. In conclusion, the non-responder phenotype identified here provides a signature of proteins and related pathways that could lead to therapeutic biomarker investigation.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Complexo I de Transporte de Elétrons , Proteômica , Receptor ErbB-2 , Trastuzumab , Humanos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Complexo I de Transporte de Elétrons/metabolismo , Proteômica/métodos , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos , Proteoma/metabolismo , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico
2.
Biofabrication ; 16(4)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38866003

RESUMO

Tumor-on-chips (ToCs) are useful platforms for studying the physiology of tumors and evaluating the efficacy and toxicity of anti-cancer drugs. However, the design and fabrication of a ToC system is not a trivial venture. We introduce a user-friendly, flexible, 3D-printed microfluidic device that can be used to culture cancer cells or cancer-derived spheroids embedded in hydrogels under well-controlled environments. The system consists of two lateral flow compartments (left and right sides), each with two inlets and two outlets to deliver cell culture media as continuous liquid streams. The central compartment was designed to host a hydrogel in which cells and microtissues can be confined and cultured. We performed tracer experiments with colored inks and 40 kDa fluorescein isothiocyanate dextran to characterize the transport/mixing performances of the system. We also cultured homotypic (MCF7) and heterotypic (MCF7-BJ) spheroids embedded in gelatin methacryloyl hydrogels to illustrate the use of this microfluidic device in sustaining long-term micro-tissue culture experiments. We further demonstrated the use of this platform in anticancer drug testing by continuous perfusion of doxorubicin, a commonly used anti-cancer drug for breast cancer. In these experiments, we evaluated drug transport, viability, glucose consumption, cell death (apoptosis), and cytotoxicity. In summary, we introduce a robust and friendly ToC system capable of recapitulating relevant aspects of the tumor microenvironment for the study of cancer physiology, anti-cancer drug transport, efficacy, and safety. We anticipate that this flexible 3D-printed microfluidic device may facilitate cancer research and the development and screening of strategies for personalized medicine.


Assuntos
Antineoplásicos , Neoplasias da Mama , Impressão Tridimensional , Esferoides Celulares , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Células MCF-7 , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Dextranos/química , Gelatina/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Sobrevivência Celular/efeitos dos fármacos , Metacrilatos
3.
PLoS One ; 19(5): e0303612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820505

RESUMO

Obesity, a burgeoning global health crisis, has tripled in prevalence over the past 45 years, necessitating innovative research methodologies. Adipocytes, which are responsible for energy storage, play a central role in obesity. However, most studies in this field rely on animal models or adipocyte monolayer cell cultures, which are limited in their ability to fully mimic the complex physiology of a living organism, or pose challenges in terms of cost, time consumption, and ethical considerations. These limitations prompt a shift towards alternative methodologies. In response, here we show a 3D in vitro model utilizing the 3T3-L1 cell line, aimed at faithfully replicating the metabolic intricacies of adipocytes in vivo. Using a workable cell line (3T3-L1), we produced adipocyte spheroids and differentiated them in presence and absence of TNF-α. Through a meticulous proteomic analysis, we compared the molecular profile of our adipose spheroids with that of adipose tissue from lean and obese C57BL/6J mice. This comparison demonstrated the model's efficacy in studying metabolic conditions, with TNF-α treated spheroids displaying a notable resemblance to obese white adipose tissue. Our findings underscore the model's simplicity, reproducibility, and cost-effectiveness, positioning it as a robust tool for authentically mimicking in vitro metabolic features of real adipose tissue. Notably, our model encapsulates key aspects of obesity, including insulin resistance and an obesity profile. This innovative approach has the potential to significantly impact the discovery of novel therapeutic interventions for metabolic syndrome and obesity. By providing a nuanced understanding of metabolic conditions, our 3D model stands as a transformative contribution to in vitro research, offering a pathway for the development of small molecules and biologics targeting these pervasive health issues in humans.


Assuntos
Células 3T3-L1 , Adipócitos , Obesidade , Esferoides Celulares , Animais , Camundongos , Obesidade/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Esferoides Celulares/metabolismo , Camundongos Endogâmicos C57BL , Redes e Vias Metabólicas , Diferenciação Celular , Fator de Necrose Tumoral alfa/metabolismo , Proteômica/métodos
4.
Sci Rep ; 14(1): 11013, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745039

RESUMO

Cancer Stem Cells presumably drive tumor growth and resistance to conventional cancer treatments. From a previous computational model, we inferred that these cells are not uniformly distributed in the bulk of a tumorsphere. To confirm this result, we cultivated tumorspheres enriched in stem cells, and performed immunofluorescent detection of the stemness marker SOX2 using confocal microscopy. In this article, we present an image processing method that reconstructs the amount and location of the Cancer Stem Cells in the spheroids. Its advantage is the use of a statistical criterion to classify the cells in Stem and Differentiated, instead of setting an arbitrary threshold. Moreover, the analysis of the experimental images presented in this work agrees with the results from our computational models, thus enforcing the notion that the distribution of Cancer Stem Cells in a tumorsphere is non-homogeneous. Additionally, the method presented here provides a useful tool for analyzing any image in which different kinds of cells are stained with different markers.


Assuntos
Células-Tronco Neoplásicas , Esferoides Celulares , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Humanos , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791178

RESUMO

Three-dimensional cell cultures have improved the evaluation of drugs for cancer therapy, due to their high similarity to solid tumors. In melanoma, autophagy appears to show a dual role depending on the progression of the disease. p62 protein has been proposed for the evaluation of autophagic flux since its expression is an indicator of the state of autophagy. Pentoxifylline (PTX) and Norcantharidin (NCTD) are drugs that have been shown to possess anticancer effects. In this work, we used B16F1 mouse melanoma cells in two-dimensional (2D) monolayer cultures and three-dimensional (3D) spheroids to test the effect of PTX and NCTD over the p62 expression. We analyzed the effect on p62 expression through Western blot and immunofluorescence assays. Our results indicate that PTX decreases p62 expression in both cell culture models, while Norcantharidin increases its expression in 3D cultures at 24 h. Therefore, these drugs could have a potential therapeutic use for the regulation of autophagy in melanoma, depending on the state of evolution of the disease.


Assuntos
Autofagia , Compostos Bicíclicos Heterocíclicos com Pontes , Pentoxifilina , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Animais , Camundongos , Pentoxifilina/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Melanoma Experimental/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Técnicas de Cultura de Células , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Antineoplásicos/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
6.
Toxins (Basel) ; 13(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822613

RESUMO

Epithelial-mesenchymal transition (EMT) occurs in the early stages of embryonic development and plays a significant role in the migration and the differentiation of cells into various types of tissues of an organism. However, tumor cells, with altered form and function, use the EMT process to migrate and invade other tissues in the body. Several experimental (in vivo and in vitro) and clinical trial studies have shown the antitumor activity of crotoxin (CTX), a heterodimeric phospholipase A2 present in the Crotalus durissus terrificus venom. In this study, we show that CTX modulates the microenvironment of tumor cells. We have also evaluated the effect of CTX on the EMT process in the spheroid model. The invasion of type I collagen gels by heterospheroids (mix of MRC-5 and A549 cells constitutively prepared with 12.5 nM CTX), expression of EMT markers, and secretion of MMPs were analyzed. Western blotting analysis shows that CTX inhibits the expression of the mesenchymal markers, N-cadherin, α-SMA, and αv. This study provides evidence of CTX as a key modulator of the EMT process, and its antitumor action can be explored further for novel drug designing against metastatic cancer.


Assuntos
Crotoxina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Células A549 , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular , Colágeno Tipo I/metabolismo , Venenos de Crotalídeos/química , Crotoxina/isolamento & purificação , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Esferoides Celulares/metabolismo
7.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065977

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most frequent and aggressive primary brain tumor, and macrophages account for 30-40% of its composition. Most of these macrophages derive from bone marrow monocytes playing a crucial role in tumor progression. Unraveling the mechanisms of macrophages-GBM crosstalk in an appropriate model will contribute to the development of specific and more successful therapies. We investigated the interaction of U87MG human GBM cells with primary human CD14+ monocytes or the THP-1 cell line with the aim of establishing a physiologically relevant heterotypic culture model. METHODS: primary monocytes and THP-1 cells were cultured in the presence of U87MG conditioned media or co-cultured together with previously formed GBM spheroids. Monocyte differentiation was determined by flow cytometry. RESULTS: primary monocytes differentiate to M2 macrophages when incubated with U87MG conditioned media in 2-dimensional culture, as determined by the increased percentage of CD14+CD206+ and CD64+CD206+ populations in CD11b+ cells. Moreover, the mitochondrial protein p32/gC1qR is expressed in monocytes exposed to U87MG conditioned media. When primary CD14+ monocytes or THP-1 cells are added to previously formed GBM spheroids, both invade and establish within them. However, only primary monocytes differentiate and acquire a clear M2 phenotype characterized by the upregulation of CD206, CD163, and MERTK surface markers on the CD11b+CD14+ population and induce alterations in the sphericity of the cell cultures. CONCLUSION: our results present a new physiologically relevant model to study GBM/macrophage interactions in a human setting and suggest that both soluble GBM factors, as well as cell-contact dependent signals, are strong inducers of anti-inflammatory macrophages within the tumor niche.


Assuntos
Neoplasias Encefálicas/metabolismo , Técnicas de Cocultura/métodos , Glioblastoma/metabolismo , Macrófagos/citologia , Monócitos/citologia , Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Comunicação Celular , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Mitocondriais/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Cultura Primária de Células , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Células THP-1
8.
Mol Biol Rep ; 48(4): 3649-3663, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33765252

RESUMO

Neurogenesis was believed to end after the period of embryonic development. However, the possibility of obtaining an expressive number of cells with functional neuronal characteristics implied a great advance in experimental research. New techniques have emerged to demonstrate that the birth of new neurons continues to occur in the adult brain. Two main rich sources of these cells are the subventricular zone (SVZ) and the subgranular zone of the hippocampal dentate gyrus (SGZ) where adult neural stem cells (aNSCs) have the ability to proliferate and differentiate into mature cell lines. The cultivation of neurospheres is a method to isolate, maintain and expand neural stem cells (NSCs) and has been used extensively by several research groups to analyze the biological properties of NSCs and their potential use in injured brains from animal models. Throughout this review, we highlight the areas where this type of cell culture has been applied and the advantages and limitations of using this model in experimental studies for the neurological clinical scenario.


Assuntos
Encefalopatias/metabolismo , Neurogênese , Cultura Primária de Células/métodos , Esferoides Celulares/citologia , Animais , Encefalopatias/patologia , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/fisiologia
9.
Sci Rep ; 10(1): 21959, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319820

RESUMO

Breast cancer is the leading cause of cancer death among women worldwide. Like other cancers, mammary carcinoma progression involves acidification of the tumor microenvironment, which is an important factor for cancer detection and treatment strategies. However, the effects of acidity on mammary carcinoma cell morphology and phenotype have not been thoroughly characterized. Here, we evaluated fundamental effects of environmental acidification on mammary carcinoma cells in standard two-dimensional cultures and three-dimensional spheroids. Acidification decreased overall mammary carcinoma cell viability, while increasing their resistance to the anthracycline doxorubicin. Environmental acidification also increased extracellular vesicle production by mammary carcinoma cells. Conditioned media containing these vesicles appeared to increase fibroblast motility. Acidification also increased mammary carcinoma cell motility when cultured with fibroblasts in spheroids. Taken together, results from this study suggest that environmental acidification induces drug resistance and extracellular vesicle production by mammary carcinoma cells that promote tumor expansion.


Assuntos
Ácidos/química , Concentração de Íons de Hidrogênio , Neoplasias Mamárias Animais/patologia , Esferoides Celulares/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Técnicas In Vitro , Neoplasias Mamárias Animais/metabolismo , Microambiente Tumoral
10.
Cells ; 9(5)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403233

RESUMO

Embryo implantation into the uterine wall is a highly modulated, complex process. We previously demonstrated that Annexin A1 (AnxA1), which is a protein secreted by epithelial and inflammatory cells in the uterine microenvironment, controls embryo implantation in vivo. Here, we decipher the effects of recombinant AnxA1 in this phenomenon by using human trophoblast cell (BeWo) spheroids and uterine epithelial cells (Ishikawa; IK). AnxA1-treated IK cells demonstrated greater levels of spheroid adherence and upregulation of the tight junction molecules claudin-1 and zona occludens-1, as well as the glycoprotein mucin-1 (Muc-1). The latter effect of AnxA1 was not mediated through IL-6 secreted from IK cells, a known inducer of Muc-1 expression. Rather, these effects of AnxA1 involved activation of the formyl peptide receptors FPR1 and FPR2, as pharmacological blockade of FPR1 or FPR1/FPR2 abrogated such responses. The downstream actions of AnxA1 were mediated through the ERK1/2 phosphorylation pathway and F-actin polymerization in IK cells, as blockade of ERK1/2 phosphorylation reversed AnxA1-induced Muc-1 and claudin-1 expression. Moreover, FPR2 activation by AnxA1 induced vascular endothelial growth factor (VEGF) secretion by IK cells, and the supernatant of AnxA1-treated IK cells evoked angiogenesis in vitro. In conclusion, these data highlight the role of the AnxA1/FPR1/FPR2 pathway in uterine epithelial control of blastocyst implantation.


Assuntos
Anexina A1/metabolismo , Blastocisto/metabolismo , Receptores de Formil Peptídeo/metabolismo , Útero/fisiologia , Actinas/metabolismo , Animais , Linhagem Celular , Claudina-1/metabolismo , Implantação do Embrião , Células Epiteliais/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Mucina-1/metabolismo , Neovascularização Fisiológica , Polimerização , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA