Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artif Organs ; 48(7): 723-733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38385713

RESUMO

BACKGROUND: The SARS-CoV-2 pandemic has spurred an unparalleled scientific endeavor to elucidate the virus' structure, infection mechanisms, and pathogenesis. Two-dimensional culture systems have been instrumental in shedding light on numerous aspects of COVID-19. However, these in vitro systems lack the physiological complexity to comprehend the infection process and explore treatment options. Three-dimensional (3D) models have been proposed to fill the gap between 2D cultures and in vivo studies. Specifically, spheroids, composed of lung cell types, have been suggested for studying SARS-CoV-2 infection and serving as a drug screening platform. METHODS: 3D lung spheroids were prepared by coculturing human alveolar or bronchial epithelial cells with human lung stromal cells. The morphology, size, and ultrastructure of spheroids before and after SARS-CoV-2 infection were analyzed using optical and electron microscopy. Immunohistochemistry was used to detect spike protein and, thus, the virus presence in the spheroids. Multiplex analysis elucidated the cytokine release after virus infection. RESULTS: The spheroids were stable and kept their size and morphology after SARS-CoV-2 infection despite the presence of multivesicular bodies, endoplasmic reticulum rearrangement, tubular compartment-enclosed vesicles, and the accumulation of viral particles. The spheroid responded to the infection releasing IL-6 and IL-8 cytokines. CONCLUSION: This study demonstrates that coculture spheroids of epithelial and stromal cells can serve as a cost-effective infection model for the SARS-CoV-2 virus. We suggest using this 3D spheroid as a drug screening platform to explore new treatments related to the cytokines released during virus infection, especially for long COVID treatment.


Assuntos
COVID-19 , Avaliação Pré-Clínica de Medicamentos , Pulmão , SARS-CoV-2 , Esferoides Celulares , Humanos , Esferoides Celulares/virologia , COVID-19/virologia , SARS-CoV-2/fisiologia , Pulmão/virologia , Pulmão/patologia , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Técnicas de Cocultura , Citocinas/metabolismo , Análise Custo-Benefício , Células Epiteliais/virologia
2.
Artif Organs ; 45(6): 548-558, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33264436

RESUMO

The new coronavirus (2019-nCoV) or the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was officially declared by the World Health Organization (WHO) as a pandemic in March 2020. To date, there are no specific antiviral drugs proven to be effective in treating SARS-CoV-2, requiring joint efforts from different research fronts to discover the best route of treatment. The first decisions in drug discovery are based on 2D cell culture using high-throughput screening. In this context, spheroids and organoids emerge as a reliable alternative. Both are scaffold-free 3D engineered constructs that recapitulate key cellular and molecular events of tissue physiology. Different studies have already shown their advantages as a model for different infectious diseases, including SARS-CoV-2 and for drug screening. The use of these 3D engineered tissues as an in vitro model can fill the gap between 2D cell culture and in vivo preclinical assays (animal models) as they could recapitulate the entire viral life cycle. The main objective of this review is to understand spheroid and organoid biology, highlighting their advantages and disadvantages, and how these scaffold-free engineered tissues can contribute to a better comprehension of viral infection by SARS-CoV-2 and to the development of in vitro high-throughput models for drug screening.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Organoides/fisiologia , Esferoides Celulares/fisiologia , Engenharia Tecidual/métodos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Organoides/virologia , SARS-CoV-2 , Esferoides Celulares/virologia , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA