Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34977930

RESUMO

Luminal breast cancer (BrCa) has a favorable prognosis compared with other tumor subtypes. However, with time, tumors may evolve and lead to disease progression; thus, there is a great interest in unraveling the mechanisms that drive tumor metastasis and endocrine resistance. In this review, we focus on one of the many pathways that have been involved in tumor progression, the fibroblast growth factor/fibroblast growth factor receptor (FGFR) axis. We emphasize in data obtained from in vivo experimental models that we believe that in luminal BrCa, tumor growth relies in a crosstalk with the stromal tissue. We revisited the studies that illustrate the interaction between hormone receptors and FGFR. We also highlight the most frequent alterations found in BrCa cell lines and provide a short review on the trials that use FGFR inhibitors in combination with endocrine therapies. Analysis of these data suggests there are many players involved in this pathway that might be also targeted to decrease FGF signaling, in addition to specific FGFR inhibitors that may be exploited to increase their efficacy.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/fisiologia , Receptores de Esteroides/fisiologia , Transdução de Sinais/fisiologia , Animais , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/química , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Receptor alfa de Estrogênio/análise , Feminino , Fatores de Crescimento de Fibroblastos/genética , Amplificação de Genes , Humanos , Camundongos , Mutação , Receptor Cross-Talk/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/genética
2.
Int Urol Nephrol ; 51(10): 1823-1829, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31368056

RESUMO

PURPOSE: The recent observation that urinary calcium excretion (UCE) drops considerably with CKD and that this effect may occur beyond compensation for reduced intestinal calcium absorption suggests that CKD per se is a state of sustained positive calcium balance, a mechanism likely to contribute to vascular calcification and CVD in CKD. However, the determinants of UCE reduction in CKD are not well understood and there is a lack of clinical studies, particularly in the CKD population. Therefore, in this study, we aimed to evaluate variables associated with UCE in a CKD cohort. METHODS: Baseline data on 356 participants of the Progredir Study, Sao Paulo, Brazil, essentially composed of CKD G3a-G4, were analyzed according to UCE (24 h urine collection). RESULTS: Median 24 h UCE was 38 mg/day (IQR 21-68 mg/day) and 0.48 mg/kg/day (IQR 0.28-0.82 mg/kg/day). In univariate analysis, UCE was inversely related to age, phosphorus, 1-84 PTH, FGF-23 and sclerostin, and positively associated with eGFR, DBP, 1,25(OH)2-vitamin D, calcium, bicarbonate, total calorie intake and spironolactone use. After adjustments for age, sex and eGFR, only 1,25(OH)2-vitamin D, calcium, FGF-23, bicarbonate and total calorie intake remained associated with it, but not PTH nor sclerostin. Lastly, in a multivariable model, eGFR, serum 1,25(OH)2-vitamin D, calcium, and FGF-23 remained associated with UCE. Similar results were observed when calcium fractional excretion was used instead of UCE, with eGFR, 1-25-vitamin D and FGF-23 remaining as independent associations. CONCLUSION: Our results showed that CKD is associated with very low levels of UCE and that 1,25(OH)2-vitamin D, serum calcium and FGF-23 were independently associated with UCE in this population, raising the question whether these factors are modulators of the tubular handling of calcium in CKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Calcitriol/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Hipercalciúria/etiologia , Hormônio Paratireóideo/fisiologia , Insuficiência Renal Crônica/complicações , Idoso , Estudos Transversais , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino
3.
Skin Pharmacol Physiol ; 32(5): 275-282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31352445

RESUMO

Cutaneous aging is a complex and continuous biological process characterized by cellular and molecular alterations, with progressive reduction of the body's capacity to maintain the homeostasis, senescence, and/or apoptosis of the dermal cells. Fibroblast growth factors (FGF) have elicited studies to evaluate their role of repair and remodeling of the dermis during the skin anti-aging process, since they are regulatory proteins that mediate important signaling pathways and act on cell regeneration and repair processes. FGF acts primarily through binding to tyrosine kinase receptors through the autophosphorylation of their residues, promoting the phosphorylation of serine, threonine, and tyrosine residues of specific target proteins such as Raf-1, MAPK/Erk kinase, and extracellular signal-regulated kinase-1, which are part of the cascade of MAP kinases (mitogen-activated protein kinase). Then, FGF initiate signaling cascades inside the cell, where each kinase activates the following by phosphorylation, resulting in alterations of cellular functions. In addition, the FGF has a relevant role in anti-aging therapy because it is related to collagen and elastin synthesis activation responsible for skin resistance and elasticity, characteristics that are diminished with skin aging. Thus, the present article aims to review several scientific studies that demonstrated the cell signaling involved with the action of FGF on skin aging.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Envelhecimento da Pele/fisiologia , Cosmecêuticos , Humanos
4.
Nat Rev Nephrol ; 11(11): 656-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26416497

RESUMO

Dysregulated phosphate metabolism is a common consequence of chronic kidney disease, and is characterized by a high circulating level of fibroblast growth factor (FGF)-23, hyperparathyroidism, and hyperphosphataemia. Kidney transplantation can elicit specific alterations to phosphate metabolism that evolve over time, ranging from severe hypophosphataemia (<0.5 mmol/l) to hyperphosphataemia (>1.50 mmol/l) and high FGF-23 levels. The majority of renal transplant recipients develop hypophosphataemia during the first 3 months after transplantation as a consequence of relatively slow adaptation of FGF-23 and parathyroid hormone levels to restored renal function, and the influence of immunosuppressive drugs. By 3-12 months after transplantation, phosphate homeostasis is at least partially restored in the majority of recipients, which is paralleled by a substantially reduced risk of cardiovascular-associated morbidity and mortality compared with the pre-transplantation setting. Many renal transplant recipients, however, exhibit persistent abnormalities in phosphate homeostasis, which is often due to multifactorial causes, and may contribute to adverse outcomes on the cardiovascular system, kidney, and bone. Dietary and pharmacologic interventions might improve phosphate homeostasis in renal transplant recipients, but additional insight into the pathophysiology of transplantation-associated abnormalities in phosphate homeostasis is needed to further optimize disease management and improve prognosis for renal transplant recipients.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Homeostase , Transplante de Rim , Fosfatos/fisiologia , Fator de Crescimento de Fibroblastos 23 , Humanos
5.
J Neurochem ; 131(3): 303-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25041175

RESUMO

Osmotic swelling of neurons and glial cells contributes to the development of retinal edema and neurodegeneration. We show that nerve growth factor (NGF) inhibits the swelling of glial (Müller) and bipolar cells in rat retinal slices induced by barium-containing hypoosmotic solution. NGF also reduced Müller and bipolar cell swelling in the post-ischemic retina. On the other hand, NGF prevented the swelling of freshly isolated Müller cells, but not of isolated bipolar cells, suggesting that NGF induces a release of factors from Müller cells that inhibit bipolar cell swelling in retinal slices. The inhibitory effect of NGF on Müller cell swelling was mediated by activation of TrkA (the receptor tyrosine kinase A), but not p75(NTR) , and was prevented by blockers of metabotropic glutamate, P2Y1 , adenosine A1 , and fibroblast growth factor receptors. Basic fibroblast growth factor fully inhibited the swelling of freshly isolated Müller cells, but only partially the swelling of isolated bipolar cells. In addition, glial cell line-derived neurotrophic factor and transforming growth factor-ß1, but not epidermal growth factor and platelet-derived growth factor, reduced the swelling of bipolar cells. Both Müller and bipolar cells displayed TrkA immunoreactivity, while Müller cells were also immunostained for p75(NTR) and NGF. The data suggest that the neuroprotective effect of NGF in the retina is in part mediated by prevention of the cytotoxic glial and bipolar cell swelling. Cytotoxic cell swelling contributes to retinal neurodegeneration. Nerve growth factor (NGF) inhibits the osmotic swelling of glial cells by acting at TrkA, release of bFGF, and opening of K(+) and Cl(-) channels. The NGF-induced glial release of cytokines like bFGF inhibits the osmotic swelling of bipolar cells, suggesting that the neuroprotective effect of NGF is in part mediated by prevention of cytotoxic cell swelling.


Assuntos
Citocinas/metabolismo , Fator de Crescimento Neural/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Células Bipolares da Retina/efeitos dos fármacos , Células Bipolares da Retina/metabolismo , Animais , Tamanho Celular/efeitos dos fármacos , Feminino , Fatores de Crescimento de Fibroblastos/fisiologia , Masculino , Pressão Osmótica , Ratos , Ratos Long-Evans , Receptores de Fator de Crescimento Neural/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
6.
Rev. chil. endocrinol. diabetes ; 7(3): 99-103, jul.2014. graf
Artigo em Espanhol | LILACS | ID: lil-789305

RESUMO

Almost 50 percent of Noonan syndrome patients, characterized by short stature, present activating mutations of the citoplasmatic phosphatase SHP-2, which induce hyperactivation of the Ras/MAPK pathway. On the other hand, the fibroblast growth factor 21 (FGF-21), recently suggested as a FGF with “endocrine” function, would affect longitudinal growth inhibiting growth hormone signaling at chondrocytes level. Union and activation of FGF-21 to its receptor is regulated by the co-factor beta Klotho (KLB). Aims: To determine if FGF-21 and/or FGF-21+KLB are able to modify the genetic expression of SHP-2 ina human skin fibroblast cell line (Malme-3). Methods: cells were incubated with or without FGF-21, FGF-21 + KLB. At 12 and 24 hours after induction total RNA was extracted andSHP-2 mRNA levels were determine by quantitative PCR. Expression of GADPH gene was employed for normalization. Results: Incubation with FGF-21 produce a 36 percent (p = < 0,05)increment in SHP-2 expression, which was not modified with KLB co-incubation. Discussion: it is shown by the first time that FGF-21 is able to produce an increase in SHP-2 gene expression in human fibroblast, which was independent of KLB presence...


Assuntos
Humanos , Masculino , Adulto , Feminino , Fatores de Crescimento de Fibroblastos/fisiologia , Fatores de Crescimento de Fibroblastos/genética , /fisiologia , Células Cultivadas , DNA Complementar , Expressão Gênica , Reação em Cadeia da Polimerase
7.
Genet Mol Res ; 12(4): 6067-79, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24338401

RESUMO

Mesenchymal stem cells derived from bone marrow (BMSCs) are a population of self-renewing multipotent cells that are capable of differentiating into various cellular lineages, and are widely employed in tissue engineering and cell therapy. Recently, clinical research involving BMSCs has become increasingly popular. In order to conduct appropriate research, it is first necessary to amplify large amounts of functional BMSCs in vitro. However, after several passages of expanding in vitro, the proliferation and differentiation potential of BMSCs gradually decline. To determine whether overexpression of Oct4 or Sox2 might prevent this decline, we transfected Oct4 or Sox2, which are essential for the pluripotency and self-renewal of embryonic stem cells, into BMSCs of Xiaomeishan porcine by a lentivirus. The results showed that overexpression of Sox2 or Oct4 BMSCs in culture media containing a basic fibroblast growth factor resulted in higher proliferation and differentiation compared to controls, suggesting that genetic modification of stemness-related genes is an efficient way to maintain the proliferation and differentiation potential of BMSCs.


Assuntos
Adipogenia , Proliferação de Células , Células-Tronco Mesenquimais/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Células Cultivadas , Fatores de Crescimento de Fibroblastos/fisiologia , Expressão Gênica , Células HEK293 , Humanos , Fator 3 de Transcrição de Octâmero/genética , Osteogênese , Fatores de Transcrição SOXB1/genética , Sus scrofa
9.
J Bras Nefrol ; 32(3): 323-31, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21103697

RESUMO

Approximately 10 years ago, a member of the family of the fibroblast growth factors, the hormone FGF-23 (fibroblast growth factor 23) was discovered. Its currently known functions involve phosphorus (P) metabolism and inhibition of 1α hydroxylase, the enzyme responsible for the synthesis of calcitriol. That discovery led to a better understanding of the mechanisms of P control, an element associated with mortality, especially in chronic kidney disease. This study reviews several aspects of that hormone, such as its discovery, function, production, mechanism of action, and the most recent clinical studies about it. Afterwards, a discussion about the possible effects of those studies on clinical practice will be presented.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Doença Crônica , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Nefropatias/sangue , Nefropatias/metabolismo , Fósforo/metabolismo
10.
J. bras. nefrol ; 32(3): 323-331, jul.-set. 2010.
Artigo em Português | LILACS | ID: lil-562923

RESUMO

Há aproximadamente 10 anos descobriuse um hormônio denominado FGF-23 (fator de crescimento de fibroblastos 23), um membro da família dos fatores de crescimento de fibroblastos, cujas funções atualmente conhecidas envolvem o metabolismo do fósforo (P) e a inibição da 1α hidroxilase, enzima responsável pela síntese de calcitriol. Tal descoberta possibilitou um novo entendimento sobre os mecanismos de controle do P, um elemento associado com mortalidade, especialmente na doença renal crônica (DRC). Nesta revisão descreveremos diversos aspectos deste hormônio, desde a sua descoberta, função, produção, mecanismo de ação, até os últimos estudos clínicos envolvendo o mesmo. Posteriormente, abordaremos as possíveis repercussões destes estudos na prática clínica.


Approximately 10 years ago, a member of the family of the fibroblast growth factors, the hormone FGF-23 (fibroblast growth factor 23) was discovered. Its currently known functions involve phosphorus (P) metabolism and inhibition of 1αhydroxylase, the enzyme responsible for the synthesis of calcitriol. That discovery led to a better understanding of the mechanisms of P control, an element associated with mortality, especially in chronic kidney disease. This study reviews several aspects of that hormone, such as its discovery, function, production, mechanism of action, and the most recent clinical studies about it. Afterwards, a discussion about the possible effects of those studies on clinical practice will be presented.


Assuntos
Animais , Humanos , Fatores de Crescimento de Fibroblastos/fisiologia , Doença Crônica , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/sangue , Nefropatias/sangue , Nefropatias/metabolismo , Fósforo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA