Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Life Sci Alliance ; 7(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39074903

RESUMO

Trypanosoma cruzi uses various mechanisms to cope with osmotic fluctuations during infection, including the remodeling of organelles such as the contractile vacuole complex (CVC). Little is known about the morphological changes of the CVC during pulsation cycles occurring upon osmotic stress. Here, we investigated the structure-function relationship between the CVC and the flagellar pocket domain where fluid discharge takes place-the adhesion plaque-during the CVC pulsation cycle. Using TcrPDEC2 and TcVps34 overexpressing mutants, known to have low and high efficiency for osmotic responses, we described a structural phenotype for the CVC that matches their corresponding physiological responses. Quantitative tomography provided data on the volume of the CVC and spongiome connections. Changes in the adhesion plaque during the pulsation cycle were also quantified and a dense filamentous network was observed. Together, the results suggest that the adhesion plaque mediates fluid discharge from the central vacuole, revealing new aspects of the osmoregulatory system in T. cruzi.


Assuntos
Pressão Osmótica , Trypanosoma cruzi , Vacúolos , Trypanosoma cruzi/fisiologia , Vacúolos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Osmorregulação , Flagelos/metabolismo , Flagelos/fisiologia , Doença de Chagas/metabolismo , Mutação
2.
PLoS One ; 19(3): e0298028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507361

RESUMO

The bacterial flagellum is a complex structure formed by more than 25 different proteins, this appendage comprises three conserved structures: the basal body, the hook and filament. The basal body, embedded in the cell envelope, is the most complex structure and houses the export apparatus and the motor. In situ images of the flagellar motor in different species have revealed a huge diversity of structures that surround the well-conserved periplasmic components of the basal body. The identity of the proteins that form these novel structures in many cases has been elucidated genetically and biochemically, but in others they remain to be identified or characterized. In this work, we report that in the alpha proteobacteria Cereibacter sphaeroides the novel protein MotK along with MotE are essential for flagellar rotation. We show evidence that these periplasmic proteins interact with each other and with MotB2. Moreover, these proteins localize to the flagellated pole and MotK localization is dependent on MotB2 and MotA2. These results together suggest that the role of MotK and MotE is to activate or recruit the flagellar stators to the flagellar structure.


Assuntos
Proteínas de Bactérias , Proteínas Periplásmicas , Proteínas de Bactérias/metabolismo , Proteínas Periplásmicas/metabolismo , Rotação , Flagelos/metabolismo , Periplasma/metabolismo
3.
J Struct Biol ; 216(1): 108064, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38280689

RESUMO

The inner structure of the flagella of Giardia intestinalis is similar to that of other organisms, consisting of nine pairs of outer microtubules and a central pair containing radial spokes. Although the 9+2 axonemal structure is conserved, it is not clear whether subregions, including the transition zone, are present in the flagella of this parasite. Giardia axonemes originate from basal bodies and have a lengthy cytosolic portion before becoming active flagella. The region of the emergence of the flagellum is not accompanied by any membrane specialization, as seen in other protozoa. Although Giardia is an intriguing model of study, few works focused on the ultrastructural analysis of the flagella of this parasite. Here, we analyzed the externalization region of the G. intestinalis flagella using ultra-high resolution scanning microscopy (with electrons and ions), atomic force microscopy in liquid medium, freeze fracture, and electron tomography. Our data show that this region possesses a distinctive morphological feature - it extends outward and takes on a ring-like shape. When the plasma membrane is removed, a structure surrounding the axoneme becomes visible in this region. This new extra-axonemal structure is observed in all pairs of flagella of trophozoites and remains attached to the axoneme even when the interconnections between the axonemal microtubules are disrupted. High-resolution scanning electron microscopy provided insights into the arrangement of this structure, contributing to the characterization of the externalization region of the flagella of this parasite.


Assuntos
Axonema , Giardia lamblia , Giardia lamblia/ultraestrutura , Microtúbulos/metabolismo , Flagelos/metabolismo , Microscopia Eletrônica de Varredura
4.
J Dairy Res ; 90(2): 146-151, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37326242

RESUMO

We compared the virulence profile and REP-PCR genotypes of Escherichia coli strains isolated from subclinical and clinical mastitis cases and dairy farm environments in Minas Gerais State, Brazil, to determine virulence factors and genotypes potentially associated with subclinical persistence in the udder. The virulence profile was obtained by the search for three virulence genes: lpfA (long polar fimbriae), fliC (flagella), and escN (type III secretion system). Subclinical isolates exhibited mainly the fliC gene (33.33%) and fliC + escN genes (30.30%). Clinical isolates exhibited mainly fliC + escN genes (50%) and environmental isolates the lpfA + escN genes (58.04%). Strains isolated from subclinical mastitis showed 6.75 times more positivity to fliC than environmental isolates. Thirty-four genotypes were observed in the REP-PCR analysis, and clinical mastitis isolates indicated more genetic proximity to dairy farm environment isolates than subclinical mastitis isolates. In conclusion, the results suggested that flagella may be an important virulence factor for mammary persistent E. coli infection in cattle, however, none of the E. coli REP-PCR genotypes were associated with subclinical infection.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Mastite Bovina , Animais , Bovinos , Feminino , Escherichia coli , Fatores de Virulência/genética , Infecções por Escherichia coli/veterinária , Flagelos
5.
Rev Argent Microbiol ; 55(3): 226-234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37076397

RESUMO

Proteus mirabilis(P. mirabilis) is a common etiological agent of urinary tract infections, particularly those associated with catheterization. P. mirabilis efficiently forms biofilms on different surfaces and shows a multicellular behavior called 'swarming', mediated by flagella. To date, the role of flagella in P. mirabilis biofilm formation has been under debate. In this study, we assessed the role of P. mirabilis flagella in biofilm formation using an isogenic allelic replacement mutant unable to express flagellin. Different approaches were used, such as the evaluation of cell surface hydrophobicity, bacterial motility and migration across catheter sections, measurements of biofilm biomass and biofilm dynamics by immunofluorescence and confocal microscopy in static and flow models. Our findings indicate that P. mirabilis flagella play a role in biofilm formation, although their lack does not completely avoid biofilm generation. Our data suggest that impairment of flagellar function can contribute to biofilm prevention in the context of strategies focused on particular bacterial targets.


Assuntos
Proteus mirabilis , Infecções Urinárias , Humanos , Biofilmes , Infecções Urinárias/microbiologia , Flagelos
6.
Trends Parasitol ; 39(5): 332-344, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933967

RESUMO

A key morphological feature of kinetoplastid parasites is the position and length of flagellum attachment to the cell body. This lateral attachment is mediated by the flagellum attachment zone (FAZ), a large complex cytoskeletal structure, which is essential for parasite morphogenesis and pathogenicity. Despite the complexity of the FAZ only two transmembrane proteins, FLA1 and FLA1BP, are known to interact and connect the flagellum to the cell body. Across the different kinetoplastid species, each only has a single FLA/FLABP pair, except in Trypanosoma brucei and Trypanosoma congolense where there has been an expansion of these genes. Here, we focus on the selection pressure behind the evolution of the FLA/FLABP proteins and the likely impact this will have on host-parasite interactions.


Assuntos
Flagelos , Trypanosoma brucei brucei , Proteínas de Membrana/metabolismo , Citoesqueleto , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
7.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430181

RESUMO

In enteropathogenic Escherichia coli (EPEC), the production of flagella and the type III secretion system (T3SS) is activated in the presence of host cultured epithelial cells. The goal of this study was to investigate the relationship between expression of flagella and the T3SS. Mutants deficient in assembling T3SS basal and translocon components (ΔespA, ΔespB, ΔespD, ΔescC, ΔescN, and ΔescV), and in secreting effector molecules (ΔsepD and ΔsepL) were tested for flagella production under several growth conditions. The ΔespA mutant did not produce flagella in any condition tested, although fliC was transcribed. The remaining mutants produced different levels of flagella upon growth in LB or in the presence of cells but were significantly diminished in flagella production after growth in Dulbecco's minimal essential medium. We also investigated the role of virulence and global regulator genes in expression of flagella. The ΔqseB and ΔqseC mutants produced abundant flagella only when growing in LB and in the presence of HeLa cells, indicating that QseB and QseC act as negative regulators of fliC transcription. The ΔgrlR, ΔperA, Δler, Δhns, and Δfis mutants produced low levels of flagella, suggesting these regulators are activators of fliC expression. These data suggest that the presence of an intact T3SS is required for assembly of flagella highlighting the existence in EPEC of a cross-talk between these two virulence-associated T3SSs.


Assuntos
Escherichia coli Enteropatogênica , Proteínas de Escherichia coli , Humanos , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HeLa , Regulação Bacteriana da Expressão Gênica , Flagelos/genética , Flagelos/metabolismo
8.
Braz J Microbiol ; 53(2): 557-564, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35303296

RESUMO

Salmonella Typhimurium is a pathogen of clinical relevance and a model of study in host-pathogen interactions. The virulence and stress-related periplasmic protein VisP is important during S. Typhimurium pathogenesis. It supports bacteria invading host cells, surviving inside macrophages, swimming, and succeeding in murine colitis model, O-antigen assembly, and responding to cationic antimicrobial peptides. This study aimed to investigate the role of the O-antigen molecular ruler WzzST and the periplasmic protein VisP in swarming motility and osmotic stress response. Lambda red mutagenesis was performed to generate single and double mutants, followed by swarming motility, qRT-PCR, Western blot, and growth curves. Here we demonstrate that the deletion of visP affects swarming under osmotic stress and changes the expression levels of genes responsible for chemotaxis, flagella assembly, and general stress response. The deletion of the gene encoding for the O-antigen co-polymerase wzzST increases swarming motility but not under osmotic stress. A second mutation in O-antigen co-polymerase wzzST in a ΔvisP background affected gene expression levels. The ΔvisP growth was affected by sodium and magnesium levels on N-minimum media. These data indicate that WzzST has a role in swarming the motility of S. Typhimurium, as the VisP is involved in chemotaxis and osmotic stress, specifically in response to MgCl2 and NaCl.


Assuntos
Antígenos O , Salmonella typhimurium , Animais , Proteínas de Bactérias/metabolismo , Quimiotaxia/genética , Flagelos/fisiologia , Camundongos , Antígenos O/genética , Antígenos O/metabolismo , Osmorregulação
9.
Sci Rep ; 12(1): 3266, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228627

RESUMO

Kinesins are motor proteins present in organisms from protists to mammals playing important roles in cell division, intracellular organisation and flagellum formation and maintenance. Leishmania mexicana is a protozoan parasite of the order Kinetoplastida causing human cutaneous leishmaniasis. Kinetoplastida genome sequence analyses revealed a large number of kinesins showing sequence and structure homology to eukaryotic kinesins. Here, we investigate the L. mexicana kinesin LmxKIN29 (LmxM.29.0350), also called DEATH kinesin. The activated MAP kinase LmxMPK3, a kinase affecting flagellum length in Leishmania, is able to phosphorylate recombinant full length LmxKIN29 at serine 554. Insect promastigote LmxKIN29 Leishmania null mutants showed no obvious phenotype. However, in mouse infection experiments, the null mutants were unable to cause the disease, whereas LmxKIN29 add-backs and single allele knockouts caused footpad lesions. Localisation using promastigotes expressing GFP-tagged LmxKIN29 revealed that the kinesin is predominantly found in between the nucleus and the flagellar pocket, while in dividing cells the GFP-fusion protein was found at the anterior and posterior ends of the cells indicating a role in cytokinesis. The inability to cause lesions in infected animals and the amino acid sequence divergence from mammalian kinesins suggests that LmxKIN29 is a potential drug target against leishmaniasis.


Assuntos
Leishmania mexicana , Leishmaniose Cutânea , Animais , Flagelos/metabolismo , Cinesinas/metabolismo , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Mamíferos/metabolismo , Camundongos , Proteínas de Protozoários/metabolismo
10.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163919

RESUMO

Extracts of Hibiscus sabdariffa L. (commonly called Rosselle or "Jamaica flower" in Mexico) have been shown to have antibiotic and antivirulence properties in several bacteria. Here, an organic extract of H. sabdariffa L. is shown to inhibit motility in Salmonella enterica serovars Typhi and Typhimurium. The compound responsible for this effect was purified and found to be the hibiscus acid. When tested, this compound also inhibited motility and reduced the secretion of both flagellin and type III secretion effectors. Purified hibiscus acid was not toxic in tissue-cultured eukaryotic cells, and it was able to reduce the invasion of Salmonella Typhimurium in epithelial cells. Initial steps to understand its mode of action showed it might affect membrane proton balance.


Assuntos
Antibacterianos/farmacologia , Citratos/farmacologia , Flagelos/fisiologia , Flores/química , Hibiscus/química , Extratos Vegetais/farmacologia , Salmonella enterica/efeitos dos fármacos , Flagelos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA