Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.814
Filtrar
1.
Int J Food Microbiol ; 424: 110852, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39141974

RESUMO

This study presents comprehensive insights into the microbiological profile across all concentrated chicken broth processing stages, utilizing a combination of amplicon sequencing based on metataxonomic and culturing techniques. Samples were systematically collected throughout the production chain, with each batch yielding 10 samples per day across eight different dates. These samples underwent thorough analysis, including 16S rRNA and ITS sequencing (n = 30), culture-dependent microbiological tests (n = 40), and physical-chemical characterization (n = 10). Culturing analysis revealed the absence of Listeria monocytogenes and Salmonella spp. at any stage of processing, counts of various microorganisms such as molds, yeasts, Enterobacteria, and others remained below detection limits. Notably, spore counts of selected bacterial groups were observed post-processing, indicating the persistence of certain species, including Bacillus cereus and Clostridium perfringens, albeit in low counts. Furthermore, the study identified a diverse array of bacterial and fungal species throughout the processing chain, with notable occurrence of spore-forming bacteria. The presence of spore-forming bacteria in the final product, despite thermal processing, suggests the need for enhanced strategies to mitigate their introduction and persistence in the processing premises. Thus, this study offers valuable insights into microbial dynamics and diversity through processing concentrated chicken broth.


Assuntos
Bactérias , Galinhas , Microbiologia de Alimentos , Fungos , Galinhas/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Animais , Manipulação de Alimentos/métodos , RNA Ribossômico 16S/genética , Contagem de Colônia Microbiana , Contaminação de Alimentos/análise , Meios de Cultura/química
2.
Arch Microbiol ; 206(9): 372, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126528

RESUMO

Endophytic bacteria found in marine macroalgae have been studied for their potential antimicrobial activity, consequently, they could serve as a valuable source of bioactive compounds to control pathogenic bacteria, yeasts, and fungi. Algae endophytic bacteria were isolated from Caulerpa sp., Ulva sp., Ahnfeltiopsis sp., and Chondracantus chamissoi from Yacila and Cangrejo Beaches (Piura, Peru). Antimicrobial assays against pathogenic bacteria were evaluated using cross-culture, over-plate, and volatile organic compound tests. Afterward, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of selected crude extracts were determined, also ITS molecular analysis, antifungal activity, and PCR of iturin, fengycin, and surfactin genes were performed for bacteria strains exhibiting better activity. Forty-six algae endophytic bacteria were isolated from algae. Ten strains inhibited gram-positive pathogenic bacteria (Enterococcus faecalis, Staphylococcus epidermidis, S. aureus, and Listeria monocytogenes), and 12 inhibited gram-negative bacteria (Escherichia coli and Salmonella enteric sv typhimurium). Bacteria with better activity belong to Bacillus sp., Kluyvera ascorbata, Pantoea agglomerans, Leclercia adecarboxylata, and Enterobacter sp., which only four showed antifungal activities against Candida albicans, C. tropicalis, Colletotrichium sp., Fusarium sp., Fusarium oxysporum, and Alternaria sp. Furthermore, K. ascorbata YAFE21 and Bacillus sp. YCFE4 exhibited iturin and fengycin genes. The results indicate that the algae endophytic bacteria found in this study, particularly K. ascorbata YAFE21, Bacillus sp. YCFR6, L. adecarboxylata CUFE2, Bacillus sp. YUFE8, Enterobacter sp. YAFL1, and P. agglomerans YAFL6, could be investigated as potential producers of antimicrobial compounds due to their broad activity against various microorganisms.


Assuntos
Endófitos , Testes de Sensibilidade Microbiana , Alga Marinha , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Endófitos/classificação , Alga Marinha/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Fungos/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Ulva/microbiologia , Caulerpa/microbiologia , Bactérias Gram-Positivas/efeitos dos fármacos
3.
Nat Commun ; 15(1): 6951, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138171

RESUMO

As the Earth warms, alternatives to traditional farming are crucial. Exploring fungi, especially poly extremophilic and extremotolerant species, to be used as plant probiotics, represents a promising option. Extremophilic fungi offer avenues for developing and producing innovative biofertilizers, effective biocontrol agents against plant pathogens, and resilient enzymes active under extreme conditions, all of which are crucial to enhance agricultural efficiency and sustainability through improved soil fertility and decreased reliance on agrochemicals. Yet, extremophilic fungi's potential remains underexplored and, therefore, comprehensive research is needed to understand their roles as tools to foster sustainable agriculture practices amid climate change. Efforts should concentrate on unraveling the complex dynamics of plant-fungi interactions and harnessing extremophilic fungi's ecological functions to influence plant growth and development. Aspects such as plant's epigenome remodeling, fungal extracellular vesicle production, secondary metabolism regulation, and impact on native soil microbiota are among many deserving to be explored in depth. Caution is advised, however, as extremophilic and extremotolerant fungi can act as both mitigators of crop diseases and as opportunistic pathogens, underscoring the necessity for balanced research to optimize benefits while mitigating risks in agricultural settings.


Assuntos
Agricultura , Mudança Climática , Fungos , Micobioma , Microbiologia do Solo , Agricultura/métodos , Fungos/genética , Fungos/metabolismo , Extremófilos/metabolismo , Produtos Agrícolas/microbiologia , Solo/química
4.
Microb Pathog ; 195: 106837, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39103128

RESUMO

Microbial resistance to drugs continues to be a global public health issue that demands substantial investment in research and development of new antimicrobial agents. Essential oils (EO) have demonstrated satisfactory and safe antimicrobial action, being used in pharmaceutical, cosmetic, and food formulations. In order to improve solubility, availability, and biological action, EO have been converted into nanoemulsions (NE). This review identified scientific evidence corroborating the antimicrobial action of nanoemulsions of essential oils (NEEO) against antibiotic-resistant pathogens. Using integrative review methodology, eleven scientific articles evaluating the antibacterial or antifungal assessment of NEEO were selected. The synthesis of evidence indicates that NEEO are effective in combating multidrug-resistant microorganisms and in the formation of their biofilms. Factors such as NE droplet size, chemical composition of essential oils, and the association of NE with antibiotics are discussed. Furthermore, NEEO showed satisfactory results in vitro and in vivo evaluations against resistant clinical isolates, making them promising for the development of new antimicrobial and antivirulence drugs.


Assuntos
Bactérias , Biofilmes , Emulsões , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Emulsões/química , Emulsões/farmacologia , Biofilmes/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Humanos , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Fungos/efeitos dos fármacos , Nanopartículas/química , Animais
5.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124942

RESUMO

Secondary metabolites produced by fungi are well known for their biological properties, which play important roles in medicine. These metabolites aid in managing infections and treating chronic illnesses, thereby contributing substantially to human health improvement. Despite this extensive knowledge, the vast biodiversity and biosynthetic potential of fungi is still largely unexplored, highlighting the need for further research in natural products. In this review, several secondary metabolites of fungal origin are described, emphasizing novel structures and skeletons. The detection and characterization of these metabolites have been significantly facilitated by advancements in analytical systems, particularly modern hyphenated liquid chromatography/mass spectrometry. These improvements have primarily enhanced sensitivity, resolution, and analysis flow velocity. Since the in vitro production of novel metabolites is often lower than the re-isolation of known metabolites, understanding chromatin-based alterations in fungal gene expression can elucidate potential pathways for discovering new metabolites. Several protocols for inducing metabolite production from different strains are discussed, demonstrating the need for uniformity in experimental procedures to achieve consistent biosynthetic activation.


Assuntos
Produtos Biológicos , Cromatina , Fungos , Fungos/metabolismo , Cromatina/metabolismo , Produtos Biológicos/metabolismo , Metabolismo Secundário , Humanos
6.
Glob Chang Biol ; 30(8): e17465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39162612

RESUMO

Soil microbial traits and functions play a central role in soil organic carbon (SOC) dynamics. However, at the macroscale (regional to global) it is still unresolved whether (i) specific environmental attributes (e.g., climate, geology, soil types) or (ii) microbial community composition drive key microbial traits and functions directly. To address this knowledge gap, we used 33 grassland topsoils (0-10 cm) from a geoclimatic gradient in Chile. First, we incubated the soils for 1 week in favorable standardized conditions and quantified a wide range of soil microbial traits and functions such as microbial biomass carbon (MBC), enzyme kinetics, microbial respiration, growth rates as well as carbon use efficiency (CUE). Second, we characterized climatic and physicochemical properties as well as bacterial and fungal community composition of the soils. We then applied regression analysis to investigate how strongly the measured microbial traits and functions were linked with the environmental setting versus microbial community composition. We show that environmental attributes (predominantly the amount of soil organic matter) determined patterns of MBC along the gradient, which in turn explained microbial respiration and growth rates. However, respiration and growth normalized for MBC (i.e., specific respiration and growth) were more linked to microbial community composition than environmental attributes. Notably, both specific respiration and growth followed distinct trends and were related to different parts of the microbial community, which in turn resulted in strong effects on microbial CUE. We conclude that even at the macroscale, CUE is the result of physiologically decoupled aspects of microbial metabolism, which in turn is partially determined by microbial community composition. The environmental setting and microbial community composition affect different microbial traits and functions, and therefore both factors need to be considered in the context of macroscale SOC dynamics.


Assuntos
Ciclo do Carbono , Carbono , Microbiota , Microbiologia do Solo , Solo , Chile , Carbono/metabolismo , Carbono/análise , Solo/química , Fungos/fisiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biomassa , Pradaria
7.
Adv Appl Microbiol ; 128: 1-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059841

RESUMO

In Chile, as in the rest of the world, only a small fraction of the fungal diversity inhabiting the wide variety of its ecosystems is known. This diversity must hide an inestimable richness of species with interesting biotechnological potential, including fungal pigment producers. Recently, interest in filamentous fungi has increased significantly due to their importance as alternative sources of pigments and colorants that are environmentally and human health friendly. As a result, fungal pigments are gaining importance in various industrial applications, such as food, textiles, pharmaceuticals, cosmetics, etc. The increasing consumer demand for "green label" natural colorants requires the exploration of different ecosystems in search of new fungal species that are efficient producers of different pigment with a wide range of colors and ideally without the co-production of mycotoxins. However, advances are also needed in pigment production processes through fermentation, scale-up from laboratory to industrial scale, and final product formulation and marketing. In this respect, the journey is still full of challenges for scientists and entrepreneurs. This chapter describes studies on pigment-producing fungi collected in the forests of central-southern Chile. Aspects such as the exploration of potential candidates as sources of extracellular pigments, the optimization of pigment production by submerged fermentation, methods of pigment extraction and purification for subsequent chemical characterization, and formulation (by microencapsulation) for potential cosmetic applications are highlighted. This potential use is due to the outstanding bioactivity of most fungal pigments, making them interesting functional ingredients for many applications. Finally, the use of fungal pigments for textile and spalting applications is discussed.


Assuntos
Florestas , Fungos , Pigmentos Biológicos , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/química , Chile , Fungos/metabolismo , Fungos/genética , Fungos/classificação , Fermentação
8.
Microb Ecol ; 87(1): 98, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046491

RESUMO

Skin microbiomes in amphibians are complex systems that can be influenced by biotic and abiotic factors. In this study, we examined the effect of host species and environmental conditions on the skin bacterial and fungal microbiota of four obligate paedomorphic salamander species, commonly known as axolotls (Ambystoma andersoni, A. dumerilii, A. mexicanum, and A. taylori), all of them endemic to the Trans-Mexican Volcanic Belt. We found that despite their permanent aquatic lifestyle, these species present a host-specific skin microbiota that is distinct from aquatic communities. We identified skin-associated taxa that were unique to each host species and that differentiated axolotl species based on alpha and beta diversity metrics. Moreover, we identified a set of microbial taxa that were shared across hosts with high relative abundances across skin samples. Specifically, bacterial communities were dominated by Burkholderiales and Pseudomonadales bacterial orders and Capnodiales and Pleosporales fungal orders. Host species and environmental variables collectively explained more microbial composition variation in bacteria (R2 = 0.46) in comparison to fungi (R2 = 0.2). Our results contribute to a better understanding of the factors shaping the diversity and composition of skin microbial communities in Ambystoma. Additional studies are needed to disentangle the effects of specific host associated and environmental factors that could influence the skin microbiome of these endangered species.


Assuntos
Bactérias , Fungos , Microbiota , Pele , Animais , Pele/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , México , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Ambystoma mexicanum/microbiologia , Especificidade de Hospedeiro , Meio Ambiente , Biodiversidade
9.
Diagn Microbiol Infect Dis ; 110(1): 116442, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39024935

RESUMO

BACKGROUND: Keratomycosis is a form of infectious keratitis, an infection of the cornea, which is caused by fungi. This disease is a leading cause of ocular morbidity globally with at least 60 % of the affected individuals becoming monocularly blind. OBJECTIVE: This bibliometric analysis aimed to comprehensively assess the existing body of literature, providing insights of the evolution of keratomycosis research by identifying key themes and research gaps. METHODS: This work used the modeling method Latent Dirichlet Allocation (LDA) to identify and interpret scientific information on topics concerning existing categories in a set of documents. The HJ-Biplot method was also used to determine the relationship between the analyzed topics, taking into consideration the years under study. RESULTS: This bibliometric analysis was performed on a total of 2,599 scientific articles published between 1992 and 2022. The five leading countries with more scientific production and citations on keratomycosis were The United States of America, followed by India, China, United Kingdom and Australia. The top five topics studied were Case Reports and Corneal Infections, which exhibited a decreasing trend; followed by Penetrating Keratoplasty and Corneal Surgery, Ocular Effects of Antifungal Drugs, Gene Expression and Inflammatory Response in the Cornea and Patient Data which have been increasing throughout the years. However Filamentous Fungi and Specific Pathogens, and Antifungal Therapies research has been decreasing in trend. CONCLUSION: Additional investigation into innovative antifungal drug therapies is crucial for proactively tackling the potential future resistance to antifungal agents in scientific writing.


Assuntos
Bibliometria , Infecções Oculares Fúngicas , Ceratite , Humanos , Ceratite/microbiologia , Infecções Oculares Fúngicas/microbiologia , Antifúngicos/uso terapêutico , Saúde Global , Fungos/classificação , Fungos/isolamento & purificação , Córnea/microbiologia
10.
Naturwissenschaften ; 111(4): 36, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951264

RESUMO

Gut microbial communities are part of the regulatory array of various processes within their hosts, ranging from nutrition to pathogen control. Recent evidence shows that dung beetle's gut microbial communities release substances with antifungal activity. Because of the enormous diversity of gut microorganisms in dung beetles, there is a possibility of discovering novel compounds with antifungal properties. We tested the antifungal activity mediated by gut microbial communities of female dung beetles against nine phytopathogenic fungi strains (Colletotrichum asianum-339, C. asianum-340, C. asianum-1, C. kahawae-390, C. karstii-358, C. siamense-220, Fusarium oxysporum-ATCC338, Nectria pseudotrichia-232, Verticillium zaelandica-22). Our tests included the gut microbial communities of three species of dung beetles: Canthon cyanellus (roller beetle), Digitonthophagus gazella (burrower beetle), and Onthophagus batesi (burrower beetle), and we followed the dual confrontation protocol, i.e., we challenged each fungal strain with the microbial communities of each species of beetles in Petri dishes containing culture medium. Our results showed that gut microbial communities of the three dung beetle species exhibit antifungal activity against at least seven of the nine phytopathogenic fungal strains. The gut microbial communities of Onthophagus batesi significantly decreased the mycelial growth of the nine phytopathogenic fungi strains; the gut microbial communities of Canthon cyanellus and Digitonthophagus gazella significantly reduced the mycelial growth of seven strains. These results provide a basis for investigating novel antifungal substances within gut microbial communities of dung beetles.


Assuntos
Antifúngicos , Besouros , Fungos , Microbioma Gastrointestinal , Animais , Besouros/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA