Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxins (Basel) ; 11(10)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658776

RESUMO

In this work, we evaluate the effect of two peptides Sa12b (EDVDHVFLRF) and Sh5b (DVDHVFLRF-NH2) on Acid-Sensing Ion Channels (ASIC). These peptides were purified from the venom of solitary wasps Sphex argentatus argentatus and Isodontia harmandi, respectively. Voltage clamp recordings of ASIC currents were performed in whole cell configuration in primary culture of dorsal root ganglion (DRG) neurons from (P7-P10) CII Long-Evans rats. The peptides were applied by preincubation for 25 s (20 s in pH 7.4 solution and 5 s in pH 6.1 solution) or by co-application (5 s in pH 6.1 solution). Sa12b inhibits ASIC current with an IC50 of 81 nM, in a concentration-dependent manner when preincubation application was used. While Sh5b did not show consistent results having both excitatory and inhibitory effects on the maximum ASIC currents, its complex effect suggests that it presents a selective action on some ASIC subunits. Despite the similarity in their sequences, the action of these peptides differs significantly. Sa12b is the first discovered wasp peptide with a significant ASIC inhibitory effect.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/fisiologia , Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Células Cultivadas , Feminino , Gânglios Espinais/fisiologia , Masculino , Neurônios/fisiologia , Ratos Long-Evans , Vespas
2.
Neuroscience ; 417: 81-94, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31430528

RESUMO

Intrathecal (i.t.) administration of quinpirole, a dopamine (DA) D2-like receptor agonist, produces antinociception to mechanonociceptive stimuli but not to thermonociceptive stimuli. To determine a cellular mechanism for the specific antinociceptive effect of D2-like receptor activation on mechanonociception, we evaluated the effect of quinpirole on voltage-gated Ca2+ influx in cultured dorsal root ganglion (DRG) neurons and the D2 DA receptor distribution in subpopulations of rat nociceptive DRG neurons. Small-diameter DRG neurons were classified into IB4+ (nonpeptidergic) and IB4- (peptidergic). Intracellular [Ca2+] microfluorometry and voltage-clamp experiments showed that quinpirole reduced Ca2+ influx and inhibited the high voltage-activated Ca2+ current (HVA-ICa) in half of IB4+ neurons, leaving Ca2+ entry and HVA-ICa in IB4- neurons nearly unaffected. Pretreatment with ω-conotoxin MVIIA prevented the effect of quinpirole on HVA-ICa from IB4+ neurons, indicating that quinpirole mainly inhibits CaV2.2 channels. Immunofluorescence experiments showed that D2 DA receptor was present mainly in IB4+ small DRG neurons. Finally, in behavioral experiments in rats, the clinically approved D2-like receptor agonist pramipexole produced spinal antinociception in a similar fashion to quinpirole, with a significant effect only in the mechanonociceptive test. Our results explain, at least in part, why D2-like receptor agonists produce antinociception on mechanonociceptors.


Assuntos
Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Receptores de Dopamina D2/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Cálcio/metabolismo , Cálcio/fisiologia , Agonistas de Dopamina/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiologia , Masculino , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Nociceptores/fisiologia , Pramipexol/farmacologia , Quimpirol/farmacologia , Ratos , Ratos Wistar , Medula Espinal/metabolismo
3.
Int J Mol Sci ; 20(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141907

RESUMO

Melatonin is a neurohormone produced and secreted at night by pineal gland. Many effects of melatonin have already been described, for example: Activation of potassium channels in the suprachiasmatic nucleus and inhibition of excitability of a sub-population of neurons of the dorsal root ganglia (DRG). The DRG is described as a structure with several neuronal populations. One classification, based on the repolarizing phase of the action potential (AP), divides DRG neurons into two types: Without (N0) and with (Ninf) inflection on the repolarization phase of the action potential. We have previously demonstrated that melatonin inhibits excitability in N0 neurons, and in the present work, we aimed to investigate the melatonin effects on the other neurons (Ninf) of the DRG neuronal population. This investigation was done using sharp microelectrode technique in the current clamp mode. Melatonin (0.01-1000.0 nM) showed inhibitory activity on neuronal excitability, which can be observed by the blockade of the AP and by the increase in rheobase. However, we observed that, while some neurons were sensitive to melatonin effect on excitability (excitability melatonin sensitive-EMS), other neurons were not sensitive to melatonin effect on excitability (excitability melatonin not sensitive-EMNS). Concerning the passive electrophysiological properties of the neurons, melatonin caused a hyperpolarization of the resting membrane potential in both cell types. Regarding the input resistance (Rin), melatonin did not change this parameter in the EMS cells, but increased its values in the EMNS cells. Melatonin also altered several AP parameters in EMS cells, the most conspicuously changed was the (dV/dt)max of AP depolarization, which is in coherence with melatonin effects on excitability. Otherwise, in EMNS cells, melatonin (0.1-1000.0 nM) induced no alteration of (dV/dt)max of AP depolarization. Thus, taking these data together, and the data of previous publication on melatonin effect on N0 neurons shows that this substance has a greater pharmacological potency on Ninf neurons. We suggest that melatonin has important physiological function related to Ninf neurons and this is likely to bear a potential relevant therapeutic use, since Ninf neurons are related to nociception.


Assuntos
Potenciais de Ação , Depressores do Sistema Nervoso Central/farmacologia , Gânglios Espinais/efeitos dos fármacos , Melatonina/farmacologia , Neurônios/efeitos dos fármacos , Animais , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Masculino , Neurônios/fisiologia , Ratos , Ratos Wistar
4.
Toxins (Basel) ; 10(1)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29342943

RESUMO

The synthetic peptide PnPP-19 comprehends 19 amino acid residues and it represents part of the primary structure of the toxin δ-CNTX-Pn1c (PnTx2-6), isolated from the venom of the spider Phoneutria nigriventer. Behavioural tests suggest that PnPP-19 induces antinociception by activation of CB1, µ and δ opioid receptors. Since the peripheral and central antinociception induced by PnPP-19 involves opioid activation, the aim of this work was to identify whether this synthetic peptide could directly activate opioid receptors and investigate the subtype selectivity for µ-, δ- and/or κ-opioid receptors. Furthermore, we also studied the modulation of calcium influx driven by PnPP-19 in dorsal root ganglion neurons, and analyzed whether this modulation was opioid-mediated. PnPP-19 selectively activates µ-opioid receptors inducing indirectly inhibition of calcium channels and hereby impairing calcium influx in dorsal root ganglion (DRG) neurons. Interestingly, notwithstanding the activation of opioid receptors, PnPP-19 does not induce ß-arrestin2 recruitment. PnPP-19 is the first spider toxin derivative that, among opioid receptors, selectively activates µ-opioid receptors. The lack of ß-arrestin2 recruitment highlights its potential for the design of new improved opioid agonists.


Assuntos
Canais de Cálcio/fisiologia , Peptídeos/farmacologia , Receptores Opioides mu/fisiologia , Venenos de Aranha/farmacologia , Animais , Gânglios Espinais/fisiologia , Células HEK293 , Humanos , Neurônios/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Ratos Wistar , Xenopus laevis
5.
Invert Neurosci ; 17(2): 6, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28540583

RESUMO

Melatonin (MEL) is a conserved molecule with respect to its synthesis pathway and functions. In crayfish, MEL content in eyestalks (Ey) increases at night under the photoperiod, and this indoleamine synchronizes the circadian rhythm of electroretinogram amplitude, which is expressed by retinas and controlled by the cerebroid ganglion (CG). The aim of this study was to determine whether MEL content in eyestalks and CG or circulating MEL in hemolymph (He) follows a circadian rhythm under a free-running condition; in addition, it was tested whether MEL might directly influence the spontaneous electrical activity of the CG. Crayfish were maintained under constant darkness and temperature, a condition suitable for studying the intrinsic properties of circadian systems. MEL was quantified in samples obtained from He, Ey, and CG by means of an enzyme-linked immunosorbent assay, and the effect of exogenous MEL on CG spontaneous activity was evaluated by electrophysiological recording. Variation of MEL content in He, Ey, and CG followed a circadian rhythm that peaked at the same circadian time (CT). In addition, a single dose of MEL injected into the crayfish at different CTs reduced the level of spontaneous electrical activity in the CG. Results suggest that the circadian increase in MEL content directly affects the CG, reducing its spontaneous electrical activity, and that MEL might act as a periodical signal to reinforce the organization of the circadian system in crayfish.


Assuntos
Astacoidea/fisiologia , Ritmo Circadiano/fisiologia , Melatonina/metabolismo , Potenciais de Ação/fisiologia , Animais , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Hemolinfa/metabolismo , Masculino , Neurônios/fisiologia , Retina/metabolismo
6.
Inflamm Res ; 65(9): 701-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27193121

RESUMO

OBJECTIVE AND DESIGN: Sodium channels are highly expressed in nociceptive sensory neurons during hypernociceptive conditions. Based on the presence of a glycosidic portion in the sodium channel ß subunit associated to the antinociceptive effect of leguminous lectins via lectin domain, this study investigated the antinociceptive activity of the lectin isolated from Lonchocarpus araripensis seeds (LAL) in mice behavioral models and in NaV current in the nociceptor of rat dorsal root ganglion (DRG). MATERIAL/METHODS: LAL antinociceptive activity and the participation of opioid system, lectin domain and sodium channels were evaluated in Swiss mice models of nociception (formalin, capsaicin, hot plate, tail flick, von Frey) and in primary cultures of Wistar rats neurons of DRG (patch clamp). RESULTS: LAL presented inhibitory effects in the nociception induced by chemical and mechanical, but not by thermal stimuli and reduced total Na(+) current. LAL activity was inhibited by the lectin association with its binding sugar N-acethyl-glucosamine. CONCLUSION: LAL inhibits peripheral hypernociception by mechanisms that involve the lectin domain, inflammatory mediators and Na(+) channels. The innovative inhibitory action of leguminous lectins on NaV current brings new insights for the investigation of sodium channels role in nociception.


Assuntos
Analgésicos , Fabaceae , Lectinas , Dor/tratamento farmacológico , Canais de Sódio/fisiologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Capsaicina , Formaldeído , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Temperatura Alta , Lectinas/farmacologia , Lectinas/uso terapêutico , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nociceptividade/efeitos dos fármacos , Estimulação Física , Ratos Wistar , Sementes
7.
Toxins (Basel) ; 8(2): 39, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26861393

RESUMO

A novel conotoxin, named as PiVIIA, was isolated from the venom of Conus princeps, a marine predatory cone snail collected in the Pacific Southern Coast of Mexico. Chymotryptic digest of the S-alkylated peptide in combination with liquid chromatography coupled to tandem mass spectrometry, were used to define the sequencing of this peptide. Eleven N-terminal amino acids were verified by automated Edman degradation. PiVIIA is a 25-mer peptide (CDAOTHYCTNYWγCCSGYCγHSHCW) with six cysteine residues forming three disulphide bonds, a hydroxyproline (O) and two gamma carboxyglutamic acid (γ) residues. Based on the arrangement of six Cys residues (C-C-CC-C-C), this conotoxin might belong to the O2-superfamily. Moreover, PiVIIA has a conserved motif (-γCCS-) that characterizes γ-conotoxins from molluscivorous Conus. Peptide PiVIIA has 45% sequence identity with γ-PnVIIA-the prototype of this family. Biological activity of PiVIIA was assessed by voltage-clamp recording in rat dorsal root ganglion neurons. Perfusion of PiVIIA in the µM range produces a significant increase in the Ca(2+) currents, without significantly modifying the Na⁺, K⁺ or proton-gated acid sensing ionic currents. These results indicate that PiVIIA is a new conotoxin whose activity deserves further studies to define its potential use as a positive modulator of neuronal activity.


Assuntos
Canais de Cálcio/fisiologia , Conotoxinas/farmacologia , Caramujo Conus , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Conotoxinas/química , Conotoxinas/isolamento & purificação , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Masculino , Dados de Sequência Molecular , Neurônios/fisiologia , Peptídeos/química , Peptídeos/isolamento & purificação , Ratos Long-Evans
8.
Int J Neural Syst ; 25(8): 1550033, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510475

RESUMO

Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.


Assuntos
Técnicas de Cultura de Células/métodos , Gânglios Espinais/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Microeletrodos , Microscopia de Fluorescência/métodos , Neurônios/fisiologia , Animais , Técnicas de Cultura de Células/instrumentação , Tamanho Celular , Células Cultivadas , Gânglios Espinais/citologia , Masculino , Neurônios/citologia , Reconhecimento Automatizado de Padrão/métodos , Ratos Wistar
9.
Stem Cell Res Ther ; 6: 128, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26149068

RESUMO

INTRODUCTION: Peripheral nerves may fail to regenerate across tube implants because these lack the microarchitecture of native nerves. Bone marrow mesenchymal stem cells (MSC) secrete soluble factors that improve the regeneration of the peripheral nerves. Also, microstructured poly-caprolactone (PCL) filaments are capable of inducing bands of Büngner and promote regeneration in the peripheral nervous system (PNS). We describe here the interaction between PCL filaments and MSC, aiming to optimize PNS tubular implants. METHODS: MSC were plated on PCL filaments for 48 h and the adhesion profile, viability, proliferation and paracrine capacity were evaluated. Also, Schwann cells were plated on PCL filaments covered with MSC for 24 h to analyze the feasibility of the co-culture system. Moreover, E16 dorsal root ganglia were plated in contact with PCL filaments for 4 days to analyze neurite extension. Right sciatic nerves were exposed and a 10 mm nerve segment was removed. Distal and proximal stumps were reconnected inside a 14-mm polyethylene tube, leaving a gap of approximately 13 mm between the two stumps. Animals then received phosphate-buffered saline 1×, PCL filaments or PCL filaments previously incubated with MSC and, after 12 weeks, functional gait performance and histological analyses were made. Statistical analyses were made using Student's unpaired t-test, one-way analysis of variance (ANOVA) or two-way ANOVA followed by Bonferroni post-test. RESULTS: MSC were confined to lateral areas and ridges of PCL filaments, aligning along the longitudinal. MSC showed high viability (90 %), and their proliferation and secretion capabilities were not completely inhibited by the filaments. Schwann cells adhered to filaments plated with MSC, maintaining high viability (90 %). Neurites grew and extended over the surface of PCL filaments, reaching greater distances when over MSC-plated filaments. Axons showed more organized and myelinized fibers and reinnervated significantly more muscle fibers when they were previously implanted with MSC-covered PLC filaments. Moreover, animals with MSC-covered filaments showed increased functional recovery after 12 weeks. CONCLUSIONS: We provide evidence for the interaction among MSC, Schwann cells and PCL filaments, and we also demonstrate that this system can constitute a stable and permissive support for regeneration of segments of the peripheral nerves.


Assuntos
Células-Tronco Mesenquimais/citologia , Poliésteres/química , Engenharia Tecidual , Animais , Células da Medula Óssea/citologia , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Regeneração Nervosa , Neuritos/fisiologia , Ratos , Ratos Endogâmicos Lew , Células de Schwann/citologia , Células de Schwann/metabolismo , Alicerces Teciduais
10.
Eur J Pharmacol ; 756: 22-9, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25794844

RESUMO

Recent studies have shown that many of plant-derived compounds interact with specific ion channels and thereby modulate many sensing mechanisms, such as nociception. The monoterpenoid carvacrol (5-isopropyl-2-methylphenol) has an anti-nociceptive effect related to a reduction in neuronal excitability and voltage-gated Na(+) channels (NaV) inhibition in peripheral neurons. However, the detailed mechanisms of carvacrol-induced inhibition of neuronal NaV remain elusive. This study explores the interaction between carvacrol and NaV in isolated dorsal root ganglia neurons. Carvacrol reduced the total voltage-gated Na(+) current and tetrodotoxin-resistant (TTX-R) Na(+) current component in a concentration-dependent manner. Carvacrol accelerates current inactivation and induced a negative-shift in voltage-dependence of steady-state fast inactivation in total and TTX-R Na(+) current. Furthermore, carvacrol slowed the recovery from inactivation. Carvacrol provoked a leftward shift in both the voltage-dependence of steady-state inactivation and activation of the TTX-R Na(+) current component. In addition, carvacrol-induced inhibition of TTX-R Na(+) current was enhanced by an increase in stimulation frequency and when neurons were pre-conditioned with long depolarization pulse (5s at -50 mV). Taken all results together, we herein demonstrated that carvacrol affects NaV gating properties. The present findings would help to explain the mechanisms underlying the analgesic activity of carvacrol.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Monoterpenos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Animais , Cimenos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Cinética , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Tetrodotoxina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA