Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913688

RESUMO

The outstanding human cognitive capacities are computed in the cerebral cortex, a mammalian-specific brain region and the place of massive biological innovation. Long noncoding RNAs have emerged as gene regulatory elements with higher evolutionary turnover than mRNAs. The many long noncoding RNAs identified in neural tissues make them candidates for molecular sources of cerebral cortex evolution and disease. Here, we characterized the genomic and cellular shifts that occurred during the evolution of the long noncoding RNA repertoire expressed in the developing cerebral cortex and explored putative roles for these long noncoding RNAs in the evolution of the human brain. Using transcriptomics and comparative genomics, we comprehensively annotated the cortical transcriptomes of humans, rhesus macaques, mice, and chickens and classified human cortical long noncoding RNAs into evolutionary groups as a function of their predicted minimal ages. Long noncoding RNA evolutionary groups showed differences in expression levels, splicing efficiencies, transposable element contents, genomic distributions, and transcription factor binding to their promoters. Furthermore, older long noncoding RNAs showed preferential expression in germinative zones, outer radial glial cells, and cortical inhibitory (GABAergic) neurons. In comparison, younger long noncoding RNAs showed preferential expression in cortical excitatory (glutamatergic) neurons, were enriched in primate and human-specific gene co-expression modules, and were dysregulated in neurodevelopmental disorders. These results suggest different evolutionary routes for older and younger cortical long noncoding RNAs, highlighting old long noncoding RNAs as a possible source of molecular evolution of conserved developmental programs; conversely, we propose that the de novo expression of primate- and human-specific young long noncoding RNAs is a putative source of molecular evolution and dysfunction of cortical excitatory neurons, warranting further investigation.


Assuntos
Córtex Cerebral , Macaca mulatta , Neurônios , RNA Longo não Codificante , RNA Longo não Codificante/genética , Humanos , Córtex Cerebral/metabolismo , Animais , Camundongos , Neurônios/metabolismo , Galinhas/genética , Evolução Molecular , Transcriptoma
2.
Differentiation ; 138: 100792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935992

RESUMO

The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.


Assuntos
Matriz Extracelular , Regulação da Expressão Gênica no Desenvolvimento , Cristalino , Fator de Transcrição PAX6 , Animais , Matriz Extracelular/metabolismo , Camundongos , Cristalino/metabolismo , Cristalino/crescimento & desenvolvimento , Cristalino/citologia , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Embrião de Galinha , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Galinhas/genética , Olho/metabolismo , Olho/crescimento & desenvolvimento , Olho/embriologia
3.
Genome ; 67(7): 223-232, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742652

RESUMO

The genome organization of woodpeckers has several distinctive features e.g., an uncommon accumulation of repetitive sequences, enlarged Z chromosomes, and atypical diploid numbers. Despite the large diversity of species, there is a paucity of detailed cytogenomic studies for this group and we thus aimed to rectify this. Genome organization patterns and hence evolutionary change in the microchromosome formation of four species (Colaptes campestris, Veniliornis spilogaster, Melanerpes candidus, and Picumnus nebulosus) was established through fluorescence in situ hybridization using bacterial artificial chromosomes originally derived from Gallus gallus and Taeniopygia guttata. Findings suggest that P. nebulosus (2n = 110), which was described for the first time, had the most basal karyotype among species of Picidae studied here, and probably arose as a result of fissions of avian ancestral macrochromosomes. We defined a new chromosomal number for V. spilogaster (2n = 88) and demonstrated microchromosomal rearrangements involving C. campestris plus a single, unique hitherto undescribed rearrangement in V. spilogaster. This comprised an inversion after a fusion involving the ancestral microchromosome 12 (homologous to chicken microchromosome 12). We also determined that the low diploid number of M. candidus is related to microchromosome fusions. Woodpeckers thus exhibit significantly rearranged karyotypes compared to the putative ancestral karyotype.


Assuntos
Aves , Cromossomos Artificiais Bacterianos , Cromossomos , Evolução Molecular , Hibridização in Situ Fluorescente , Animais , Cromossomos Artificiais Bacterianos/genética , Aves/genética , Cromossomos/genética , Cariótipo , Cariotipagem , Filogenia , Galinhas/genética
4.
Vet Q ; 44(1): 1-13, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465827

RESUMO

Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.


Assuntos
Mardivirus , Doença de Marek , Doenças das Aves Domésticas , Animais , Aves Domésticas , Galinhas/genética , Brasil/epidemiologia , Filogenia , Mardivirus/genética , Doença de Marek/epidemiologia , Doença de Marek/prevenção & controle , Doença de Marek/genética , Fazendas , Oncogenes , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle
5.
BMC Genomics ; 25(1): 168, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347479

RESUMO

BACKGROUND: Understanding the molecular underpinnings of phenotypic variations is critical for enhancing poultry breeding programs. The Brazilian broiler (TT) and laying hen (CC) lines exhibit striking differences in body weight, growth potential, and muscle mass. Our work aimed to compare the global transcriptome of wing and pectoral tissues during the early development (days 2.5 to 3.5) of these chicken lines, unveiling disparities in gene expression and regulation. RESULTS: Different and bona-fide transcriptomic profiles were identified for the compared lines. A similar number of up- and downregulated differentially expressed genes (DEGs) were identified, considering the broiler line as a reference. Upregulated DEGs displayed an enrichment of protease-encoding genes, whereas downregulated DEGs exhibited a prevalence of receptors and ligands. Gene Ontology analysis revealed that upregulated DEGs were mainly associated with hormone response, mitotic cell cycle, and different metabolic and biosynthetic processes. In contrast, downregulated DEGs were primarily linked to communication, signal transduction, cell differentiation, and nervous system development. Regulatory networks were constructed for the mitotic cell cycle and cell differentiation biological processes, as their contrasting roles may impact the development of distinct postnatal traits. Within the mitotic cell cycle network, key upregulated DEGs included CCND1 and HSP90, with central regulators being NF-κB subunits (RELA and REL) and NFATC2. The cell differentiation network comprises numerous DEGs encoding transcription factors (e.g., HOX genes), receptors, ligands, and histones, while the main regulatory hubs are CREB, AR and epigenetic modifiers. Clustering analyses highlighted PIK3CD as a central player within the differentiation network. CONCLUSIONS: Our study revealed distinct developmental transcriptomes between Brazilian broiler and layer lines. The gene expression profile of broiler embryos seems to favour increased cell proliferation and delayed differentiation, which may contribute to the subsequent enlargement of pectoral tissues during foetal and postnatal development. Our findings pave the way for future functional studies and improvement of targeted traits of economic interest in poultry.


Assuntos
Galinhas , Perfilação da Expressão Gênica , Animais , Feminino , Galinhas/genética , Biologia Computacional , Transcriptoma , Diferenciação Celular/genética
6.
Poult Sci ; 103(2): 103238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071783

RESUMO

The Mapuche fowl is an autochthonous breed raised in Chile and represents an important zoogenetic resource for the local economy. This study aimed at investigating the genetic diversity, relationship and population structure of 96 local Chilean chickens derived from 3 ecotype of Mapuche fowl (Kollonka, Ketro, and Kollonka de aretes), 2 ecotype Chilean (Trintre, Cogote pelado) and 2 breeds (Light Brahma and Barred Plymouth Rock) using 12 microsatellite markers. In total, 113 alleles were detected in all populations, with a mean of 7.6 alleles per population. In all population chicken breeds, the observed and expected heterozygosity ranged from 0.91 to 0.98 and from 0.69 to 0.79. Furthermore, all populations showed significant deviations from Hardy-Weinberg expectations. Across each population, the global heterozygosity deficit (FIT) was -0.174, population differentiation index (FST) was 0.073, and the global inbreeding of individuals within breed (FIS) was -0.267. The phylogenetic relationships of chickens were examined using neighbor-joining trees constructed at the level of population. The highest Nei's standard genetic distance value of 0.559 was observed between Barred Plymouth Rock and Light Brahma, whereas the minimum value (0.099) was found between Kollonka and Trintre. The neighbor-joining tree constructed at population level revealed 2 main clusters, with Light Brahma, Barred Plymouth Rock, Ketro and Kollonka de aretes in 1 cluster, and Kollonka, Trintre and Cogote pelado breeds in the second cluster. Based on the results of the STRUCTURE analysis, the most likely number of clustering of the population evaluated was at K = 3, with Light Brahma and Barred Plymouth Rock breeds forming their own distinct clusters, while Kollonka, Ketro, Kollonka de aretes, Trintre and Cogote pelado breeds clustered together. This study represents the first report of genetic diversity in these populations in Chile. These results can be used as baseline genetic information for genetic conservation program, for instance, to control inbreeding and to implement further genetic studies in local Chilean chickens.


Assuntos
Galinhas , Variação Genética , Humanos , Animais , Galinhas/genética , Chile , Filogenia , Cruzamento , Repetições de Microssatélites
7.
PLoS One ; 18(11): e0294776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38011093

RESUMO

Pelecaniformes is an order of waterbirds that exhibit diverse and distinct morphologies. Ibis, heron, pelican, hammerkop, and shoebill are included within the order. Despite their fascinating features, the phylogenetic relationships among the families within Pelecaniformes remain uncertain and pose challenges due to their complex evolutionary history. Their karyotypic evolution is another little-known aspect. Therefore, to shed light on the chromosomal rearrangements that have occurred during the evolution of Pelecaniformes, we have used whole macrochromosome probes from Gallus gallus (GGA) to show homologies on three species with different diploid numbers, namely Cochlearius cochlearius (2n = 74), Eudocimus ruber (2n = 66), and Syrigma sibilatrix (2n = 62). A fusion between GGA6 and GGA7 was found in C. cochlearius and S. sibilatrix. In S. sibilatrix the GGA8, GGA9 and GGA10 hybridized to the long arms of biarmed macrochromosomes, indicating fusions with microchromosomes. In E. ruber the GGA7 and GGA8 hybridized to the same chromosome pair. After comparing our painting results with previously published data, we show that distinct chromosomal rearrangements have occurred in different Pelecaniformes lineages. Our study provides new insight into the evolutionary history of Pelecaniformes and the chromosomal changes involving their macrochromosomes and microchromosomes that have taken place in different species within this order.


Assuntos
Galinhas , Coloração Cromossômica , Humanos , Animais , Filogenia , Cariotipagem , Cariótipo , Galinhas/genética , Aberrações Cromossômicas , Evolução Molecular
8.
Trop Anim Health Prod ; 55(4): 256, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395815

RESUMO

Heat tolerance, especially under climate change scenarios, plays an increasingly import factor in pig and chicken production. We therefore evaluated bibliographic mapping of citation, co-occurrence of keywords, co-citation and bibliographic coupling for heat tolerance, and these species. Data was obtained from Scopus (Elsevier) and analysed in Vosviewer. We found a total of 2023 documents from 102 countries, of which 10 countries account for 50% of the publications (USA, China, Brazil, Iran, India, UK, Turkey, Germany, Egypt, and Australia). While heat tolerance is important worldwide, Global South countries, especially China, have become more prominent in publishing on this topic in recent years. Researchers from South America appear relatively isolated using the metrics of this study, with no clear explanation why. We speculate funding for research and publication may be a governing factor. The literature reviewed suggests an emphasis on mitigation strategies that include nutrition and genetics. An emphasis in poultry, especially Gallus gallus was observed and suggests more attention is needed on other species (for example, ducks and turkey). Biases in the analysis could arise due to lack of citations from recent papers, those not indexed in Scopus or in other languages. The paper advances understanding tendencies in this field of research and may point to future actions for policy makers addressing animal production and climate change research.


Assuntos
Aves Domésticas , Termotolerância , Animais , Suínos , Bibliometria , Brasil , Perus , Galinhas/genética
9.
Genes (Basel) ; 14(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37107574

RESUMO

Although molecular information for the wood stork (Mycteria americana) has been well described, data concerning their karyotypical organization and phylogenetic relationships with other storks are still scarce. Thus, we aimed to analyze the chromosomal organization and diversification of M. americana, and provide evolutionary insights based on phylogenetic data of Ciconiidae. For this, we applied both classical and molecular cytogenetic techniques to define the pattern of distribution of heterochromatic blocks and their chromosomal homology with Gallus gallus (GGA). Maximum likelihood analyses and Bayesian inferences (680 bp COI and 1007 bp Cytb genes) were used to determine their phylogenetic relationship with other storks. The results confirmed 2n = 72, and the heterochromatin distribution pattern was restricted to centromeric regions of the chromosomes. FISH experiments identified fusion and fission events involving chromosomes homologous to GGA macrochromosome pairs, some of which were previously found in other species of Ciconiidae, possibly corresponding to synapomorphies for the group. Phylogenetic analyses resulted in a tree that recovered only Ciconinii as a monophyletic group, while Mycteriini and Leptoptlini tribes were configured as paraphyletic clades. In addition, the association between phylogenetic and cytogenetic data corroborates the hypothesis of a reduction in the diploid number throughout the evolution of Ciconiidae.


Assuntos
Cromossomos , Diploide , Animais , Filogenia , Teorema de Bayes , Galinhas/genética
10.
J Pineal Res ; 75(1): e12875, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37070273

RESUMO

In vertebrates, arylalkylamine N-acetyltransferase (AANAT; EC 2.3.1.87) is the time-keeping and key regulatory enzyme in melatonin (Mel) biosynthesis. AANAT is present in the pineal gland, retina, and other regions where it is controlled by light, cyclic adenosine monophosphate (cAMP) levels, and the molecular clock. AANAT converts serotonin to N-acetyl serotonin (NAS) and the last enzyme in the pathway, hydroxy-o-methyltransferase (HIOMT), forms Mel by NAS methylation. We have previously shown that AANAT is expressed in chicken retinal ganglion cells (RGCs) during daytime at the level of mRNA and enzyme activity. Here we investigated the presence of AANAT protein and mRNA throughout development in the chicken embryonic retina as well as AANAT expression, phosphorylation, and its sub-cellular localization in primary cultures of retinal neurons from E10 embryonic retinas exposed to blue light (BL) and controls kept in the dark (D). From embryonic days 7-10 (E7-10) AANAT mRNA and protein were visualized mainly concentrated in the forming ganglion cell layer (GCL), while from E17 through postnatal days, expression was detectable all through the different retinal cell layers. At postnatal day 10 (PN10) when animals were subjected to a 12:12 h LD cycle, AANAT was mainly expressed in the GCL and inner nuclear layer cells at noon (Zeitgeber Time (ZT 6)) and in the photoreceptor cell layer at night (ZT 21). Primary cultures of retinal neurons exhibited an induction of AANAT protein when cells were exposed to BL for 1 h as compared with D controls. After BL exposure, AANAT showed a significant change in intracellular localization from the cytoplasm to the nucleus in the BL condition, remaining in the nucleus 1-2 h in the D after BL stimulation. BL induction of nuclear AANAT was substantially inhibited when cultures were treated with the protein synthesis inhibitor cycloheximide (CHD). Furthermore, the phosphorylated form of the enzyme (pAANAT) increased after BL in nuclear fractions obtained from primary cultures as compared with D controls. Finally, the knockdown of AANAT by sh-RNA in primary cultures affected cell viability regardless of the light condition. AANAT knockdown also affected the redox balance, sh-AANAT treated cultures showing higher levels of reactive oxygen species (ROS) than in the sh-control. Our results support the idea that AANAT is a BL-sensing enzyme in the inner retina of diurnal vertebrates, undergoing phosphorylation and nuclear importation in response to BL stimulation. Moreover, it can be inferred that AANAT plays a novel role in nuclear function, cell viability, and, likely, through redox balance regulation.


Assuntos
Arilalquilamina N-Acetiltransferase , Melatonina , Glândula Pineal , Animais , Embrião de Galinha , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Galinhas/genética , Galinhas/metabolismo , Ritmo Circadiano/fisiologia , Luz , Melatonina/metabolismo , Glândula Pineal/metabolismo , Retina/metabolismo , RNA Mensageiro/metabolismo , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA