Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mod Pathol ; 37(1): 100371, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015043

RESUMO

B7-H4 (VTCN1), a member of the B7 family, is overexpressed in several types of cancer. Here we investigated the pattern of expression of B7-H4 in salivary gland carcinomas (SGC) and assessed its potential as a prognostic marker and therapeutic target. Immunohistochemistry (IHC) analyses were performed in a cohort of 340 patient tumors, composed of 124 adenoid cystic carcinomas (ACC), 107 salivary duct carcinomas (SDC), 64 acinic cell carcinomas, 36 mucoepidermoid carcinomas (MEC), 9 secretory carcinomas (SC), as well as 20 normal salivary glands (controls). B7-H4 expression was scored and categorized into negative (<5% expression of any intensity), low (5%-70% expression of any intensity or >70% with weak intensity), or high (>70% moderate or strong diffuse intensity). The associations between B7-H4 expression and clinicopathologic characteristics, as well as overall survival, were assessed. Among all tumors, B7-H4 expression was more prevalent in ACC (94%) compared with those of SC (67%), MEC (44%), SDC (32%), and acinic cell carcinomas (0%). Normal salivary gland tissue did not express B7-H4. High expression of B7-H4 was found exclusively in ACC (27%), SDC (11%), and MEC (8%). In SDC, B7-H4 expression was associated with female gender (P = .002) and lack of androgen receptor expression (P = .012). In ACC, B7-H4 expression was significantly associated with solid histology (P < .0001) and minor salivary gland primary (P = .02). High B7-H4 expression was associated with a poorer prognosis in ACC, regardless of clinical stage and histologic subtype. B7-H4 expression was not prognostic in the non-ACC SGC evaluated. Our comparative study revealed distinct patterns of B7-H4 expression according to SGC histology, which has potential therapeutic implications. B7-H4 expression was particularly high in solid ACC and was an independent prognostic marker in this disease but not in the other SGC assessed.


Assuntos
Neoplasias da Mama , Carcinoma de Células Acinares , Carcinoma Adenoide Cístico , Carcinoma Mucoepidermoide , Carcinoma , Neoplasias das Glândulas Salivares , Humanos , Feminino , Carcinoma Adenoide Cístico/patologia , Prognóstico , Carcinoma de Células Acinares/patologia , Neoplasias das Glândulas Salivares/patologia , Carcinoma Mucoepidermoide/patologia , Carcinoma/patologia , Glândulas Salivares/química , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Biomarcadores Tumorais/análise
2.
Molecules ; 26(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670262

RESUMO

Stingless bee-collected pollen (bee bread) is a mixture of bee pollen, bee salivary enzymes, and regurgitated honey, fermented by indigenous microbes during storage in the cerumen pot. Current literature data for bee bread is overshadowed by bee pollen, particularly of honeybee Apis. In regions such as South America, Australia, and Southeast Asia, information on stingless bee bee bread is mainly sought to promote the meliponiculture industry for socioeconomic development. This review aims to highlight the physicochemical properties and health benefits of bee bread from the stingless bee. In addition, it describes the current progress on identification of beneficial microbes associated with bee bread and its relation to the bee gut. This review provides the basis for promoting research on stingless bee bee bread, its nutrients, and microbes for application in the food and pharmaceutical industries.


Assuntos
Abelhas/química , Mel , Própole/química , Glândulas Salivares/química , Animais , Austrália , Abelhas/metabolismo , Fermentação , Pólen/química , Própole/uso terapêutico , Glândulas Salivares/metabolismo , América do Sul
3.
Trends Parasitol ; 36(3): 250-265, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32007395

RESUMO

Triatomines are blood-feeding insects that prey on vertebrate hosts. Their saliva is largely responsible for their feeding success. The triatomine salivary content has been studied over the past decades, revealing multifunctional bioactive proteins targeting the host´s hemostasis and immune system. Recently, sequencing of salivary-gland mRNA libraries revealed increasingly complex and complete transcript databases that have been used to validate the expression of deduced proteins through proteomics. This review provides an insight into the journey of discovery and characterization of novel molecules in triatomine saliva.


Assuntos
Proteínas de Insetos/química , Insetos Vetores/química , Saliva/química , Glândulas Salivares/química , Triatominae/química , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Insetos Vetores/genética , Insetos Vetores/imunologia , Proteômica , RNA Mensageiro/química , RNA Mensageiro/genética , Saliva/imunologia , Glândulas Salivares/imunologia , Triatominae/genética , Triatominae/imunologia
4.
Microsc Microanal ; 25(6): 1482-1490, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31571553

RESUMO

The burrower bug Scaptocoris castanea Perty, 1830 (Hemiptera: Cydnidae) is an agricultural pest feeding on roots of several crops. The histology and ultrastructure of the salivary glands of S. castanea were described. The salivary system has a pair of principal salivary glands and a pair of accessory salivary glands. The principal salivary gland is bilobed with anterior and posterior lobes joined by a hilus where an excretory duct occurs. The accessory salivary gland is tubular with a narrow lumen that opens into the hilus near the excretory duct, suggesting that its secretion is stored in the lumen of the principal gland. The cytoplasm of the secretory cells is rich in the rough endoplasmic reticulum, secretory vesicles with different electron densities and mitochondria. At the base of the accessory gland epithelium, there were scattered cells that do not reach the gland lumen, with the cytoplasm rich in the rough endoplasmic reticulum, indicating a role in protein production. Data show that principal and accessory salivary glands of S. castanea produce proteinaceous saliva. This is the first morphological description of the S. castanea salivary system that is similar to other Hemiptera Pentatomomorpha, but with occurrence of basal cells in the accessory salivary gland.


Assuntos
Heterópteros , Glândulas Salivares/anatomia & histologia , Glândulas Salivares/ultraestrutura , Animais , Células Epiteliais/ultraestrutura , Histocitoquímica , Microscopia , Microscopia Eletrônica , Organelas/ultraestrutura , Saliva/química , Glândulas Salivares/química , Proteínas e Peptídeos Salivares/análise
5.
Rev Inst Med Trop Sao Paulo ; 61: e38, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31411268

RESUMO

The triatomine insect Panstrongylus megistus , one of the most important Chagas disease vectors in Brazil, presents salivary molecules pharmacologically active to counteract homeostatic responses from the host, including inhibitors of the human complement system, a major effector of immune responses. The aim of the present study was to investigate the effect of P. megistus salivary gland extract (SGE) on the complement system from different host species and characterize the inhibitory effect of SGE and intestinal contents on human complement. Glands and midguts from fourth instar nymphs were used. Hemolytic assays were performed with sheep erythrocytes as complement activators by using human, rats and chickens sera in the presence or absence of SGE. An ELISA assay was carried out detect deposition of the C3b component on IgG- or agarose-sensitized microplates, in the presence or absence of SGE or midgut contents. P. megistus SGE was able to significantly inhibit the complement of the three studied species (human, rat and chiken). Both, SGE and midgut contents inhibited C3b deposition in either the classical or the alternative pathways. As conclusions, SGE and midgut from P. megistus possess anti-complement activity. The inhibitors are effective against different host species and act on the initial steps of the complement system cascade. These inhibitors may have a role in blood feeding and Trypanosoma cruzi transmission by the vector.


Assuntos
Proteínas do Sistema Complemento/efeitos dos fármacos , Sistema Digestório/química , Insetos Vetores , Panstrongylus , Glândulas Salivares/química , Animais , Doença de Chagas/transmissão , Galinhas , Humanos , Ratos , Ovinos
6.
Parasit Vectors ; 12(1): 239, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097013

RESUMO

BACKGROUND: During the feeding process, the mouthparts of hematophagous mosquitoes break the skin barrier and probe the host tissue to find the blood. The saliva inoculated in this microenvironment modulates host hemostasis, inflammation and adaptive immune responses. However, the mechanisms involved in these biological activities remain poorly understood and few studies explored the potential roles of mosquito saliva on the individual cellular components of the immune system. Here, we report the immunomodulatory activities of Aedes aegypti salivary cocktail on murine peritoneal macrophages. RESULTS: The salivary gland extract (SGE) of Ae. aegypti inhibited the production of nitric oxide and inflammatory cytokines such as interleukin-6 (IL-6) and IL-12, as well as the expression of inducible nitric oxide synthase and NF-κB by murine macrophages stimulated by lipopolysaccharide (LPS) plus interferon-γ (IFN-γ). The spare respiratory capacity, the phagocytic and microbicidal activities of these macrophages were also reduced by Ae. aegypti SGE. These phenotypic changes are consistent with SGE suppressing the proinflammatory program of M1 macrophages. On the other hand, Ae. aegypti SGE did not influence M2-associated markers (urea production, arginase-1 and mannose receptor-1 expression), either in macrophages alternatively activated by IL-4 or in those classically activated by LPS plus IFN-γ. In addition, Ae. aegypti SGE did not display any cytokine-binding activity, nor did it affect macrophage viability, thus excluding supposed experimental artifacts. CONCLUSIONS: Given the importance of macrophages in a number of biological processes, our findings help to enlighten how vector saliva modulates vertebrate host immunity.


Assuntos
Aedes/imunologia , Diferenciação Celular , Inflamação , Macrófagos Peritoneais/imunologia , Saliva/imunologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fatores Imunológicos , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores/imunologia , Glândulas Salivares/química , Extratos de Tecidos/farmacologia
7.
Mediators Inflamm ; 2018: 1924393, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140166

RESUMO

Triatomines are known for their role as vectors of the causative agent of Chagas disease. The occurrence of an arsenal of molecules in their saliva is able to suppress vertebrate immune responses. Thus, it is reasonable to assume that the presence of molecules with therapeutic potential in their saliva is able to constrain inflammation in immune-mediated diseases. Thus, mice were exposed to dextran sulfate sodium (DSS) in drinking water uninterruptedly during 6 consecutive days and treated with T. lecticularia salivary gland extract (SGE) (3, 10, or 30 µg) or vehicle (saline) (n = 6/group). At the highest dose (30 µg), an improvement in clinical outcome and macroscopic aspects of the intestine were observed. This observation was followed by amelioration in histopathological aspects in the colon especially when the doses of 10 and 30 µg were used. Regardless of the concentration used, treatment with T. lecticularia SGE significantly reduced the levels of the inflammatory cytokine IL-6 in the intestine. The production of the anti-inflammatory cytokine IL-10 was positively impacted by the concentrations of 3 and 30 µg. Our results suggest that the presence of molecules in the T. lecticularia SGE is able to attenuate clinical outcome and colon shortening and improve intestinal architecture besides reducing the production of IL-6 and inducing a local production of IL-10 in the intestine.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Glândulas Salivares/química , Triatoma/química , Animais , Anti-Inflamatórios/química , Colite/tratamento farmacológico , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Ensaio de Imunoadsorção Enzimática , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo
8.
J Proteomics ; 174: 47-60, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29288089

RESUMO

Triatoma dimidiata, a Chagas disease vector widely distributed along Central America, has great capability for domestic adaptation as the majority of specimens caught inside human dwellings or in peridomestic areas fed human blood. Exploring the salivary compounds that overcome host haemostatic and immune responses is of great scientific interest. Here, we provide a deeper insight into its salivary gland molecules. We used high-throughput RNA sequencing to examine in depth the T. dimidiata salivary gland transcriptome. From >51 million reads assembled, 92.21% are related to putative secreted proteins. Lipocalin is the most abundant gene family, confirming it is an expanded family in Triatoma genus salivary repertoire. Other putatively secreted members include phosphatases, odorant binding protein, hemolysin, proteases, protease inhibitors, antigen-5 and antimicrobial peptides. This work expands the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI from 388 to 3815. Additionally, we complemented the salivary analysis through proteomics (available data via ProteomeXchange with identifier PXD008510), disclosing the set complexity of 119 secreted proteins and validating the transcriptomic results. Our large-scale approach enriches the pharmacologically active molecules database and improves our knowledge about the complexity of salivary compounds from haematophagous vectors and their biological interactions. SIGNIFICANCE: Several haematophagous triatomine species can transmit Trypanosoma cruzi, the etiological agent of Chagas disease. Due to the reemergence of this disease, new drugs for its prevention and treatment are considered priorities. For this reason, the knowledge of vector saliva emerges as relevant biological finding, contributing to the design of different strategies for vector control and disease transmission. Here we report the transcriptomic and proteomic compositions of the salivary glands (sialome) of the reduviid bug Triatoma dimidiata, a relevant Chagas disease vector in Central America. Our results are robust and disclosed unprecedented insights into the notable diversity of its salivary glands content, revealing relevant anti-haemostatic salivary gene families. Our work expands almost ten times the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI. Moreover, using an integrated transcriptomic and proteomic approach, we showed a correlation pattern of transcription and translation processes for the main gene families found, an important contribution to the research of triatomine sialomes. Furthermore, data generated here reinforces the secreted proteins encountered can greatly contribute for haematophagic habit, Trypanosoma cruzi transmission and development of therapeutic agent studies.


Assuntos
Glândulas Salivares/química , Triatoma/química , Animais , Doença de Chagas/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Insetos Vetores/genética , Transcriptoma/genética , Triatoma/genética
9.
Protein Expr Purif ; 139: 49-56, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28734839

RESUMO

Ixolaris is an anticoagulant protein identified in the tick saliva of Ixodes scapularis. Ixolaris contains 2 Kunitz like domains and binds to Factor Xa or Factor X as a scaffold for inhibition of the Tissue Factor (TF)/Factor VIIa (FVIIa). In contrast to tissue factor pathway inhibitor (TFPI), however, Ixolaris does not bind to the active site cleft of FXa. Instead, complex formation is mediated by the FXa heparin-binding exosite. Due to its potent and long-lasting antithrombotic activity, Ixolaris is a promising agent for anticoagulant therapy. Although numerous functional studies of Ixolaris exist, three-dimensional structure of Ixolaris has not been obtained at atomic resolution. Using the pET32 vector, we successfully expressed a TRX-His6-Ixolaris fusion protein. By combining Ni-NTA chromatography, enterokinase protease cleavage, and reverse phase HPLC (RP-HPLC), we purified isotopically labeled Ixolaris for NMR studies. 1D 1H and 2D 15N-1H NMR analysis yielded high quality 2D 15N-1H HSQC spectra revealing that the recombinant protein is folded. These studies represent the first steps in obtaining high-resolution structural information by NMR for Ixolaris enabling the investigation of the molecular basis for Ixolaris-coagulation factors interactions.


Assuntos
Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Glândulas Salivares/química , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Anticoagulantes/química , Anticoagulantes/metabolismo , Clonagem Molecular , Escherichia coli/genética , Histidina/genética , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas e Peptídeos Salivares/metabolismo
10.
Braz Oral Res ; 31: e6, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-28099576

RESUMO

The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.


Assuntos
Autoantígenos/análise , Feto/química , Glicoproteínas/análise , Fosfoproteínas/análise , Proteínas/análise , Glândulas Salivares/química , Proteínas e Peptídeos Salivares/análise , Epitélio/química , Proteínas de Ligação a Ácido Graxo , Desenvolvimento Fetal , Idade Gestacional , Cabeça/embriologia , Humanos , Imuno-Histoquímica , Pescoço/embriologia , Palato/química , Palato/embriologia , Estudos Retrospectivos , Glândulas Salivares/embriologia , Fatores de Tempo , Língua/química , Língua/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA