Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 663: 192-198, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30659801

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme in the biomineralization process as it produces phosphate from a number of phospho-substrates stimulating mineralization while it also inactivates inorganic pyrophosphate, a potent mineralization inhibitor. We have previously reported on the reconstitution of TNAP on Langmuir monolayers as well as proteoliposomes. In the present study, thin films composed of dimyristoylphosphatidic acid (DMPA) were deposited on titanium supports by the Langmuir-Blodgett (LB) technique, and we determined preservation of TNAP's phosphohydrolytic activity after incorporation into the LB films. Increased mineralization was observed after exposing the supports containing the DMPA:TNAP LB films to solutions of phospho-substrates, thus evidencing the role of TNAP on the growth of calcium phosphates after immobilization. These coatings deposited on metallic supports can be potentially applied as osteoconductive materials, aiming at the optimization of bone-substitutes integration in vivo.


Assuntos
Fosfatase Alcalina/metabolismo , Biomimética , Biomineralização , Enzimas Imobilizadas/metabolismo , Titânio/química , Fosfatos de Cálcio/química , Glicerofosfolipídeos/química , Cinética , Propriedades de Superfície
2.
PLoS One ; 13(6): e0197897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856778

RESUMO

Membrane integrity is essential in maintaining sperm viability, signaling, and motility, which are essential for fertilization. Sperm are highly susceptible to oxidative stress, as they are rich in sensitive polyunsaturated fatty acids (PUFA), and are unable to synthesize and repair many essential membrane constituents. Because of this, sperm cellular membranes are important targets of this process. Membrane Lipid Replacement (MLR) with glycerophospholipid mixtures (GPL) has been shown to ameliorate oxidative stress in cells, restore their cellular membranes, and prevent loss of function. Therefore, we tested the effects of MLR on sperm by tracking and monitoring GPL incorporation into their membrane systems and studying their effects on sperm motility and viability under different experimental conditions. Incubation of sperm with mixtures of exogenous, unoxidized GPL results in their incorporation into sperm membranes, as shown by the use of fluorescent dyes attached to GPL. The percent overall (total) sperm motility was increased from 52±2.5% to 68±1.34% after adding GPL to the incubation media, and overall sperm motility was recovered from 7±2% after H2O2 treatment to 58±2.5%)(n = 8, p<0.01) by the incorporation of GPL into sperm membranes. When sperm were exposed to H2O2, the mitochondrial inner membrane potential (MIMP), monitored using the MIMP tracker dye JC-1 in flow cytometry, diminished, whereas the addition of GPL prevented the decrease in MIMP. Confocal microscopy with Rhodamine-123 and JC-1 confirmed the mitochondrial localization of the dyes. We conclude that incubation of human sperm with glycerolphospholipids into the membranes of sperm improves sperm viability, motility, and resistance to oxidizing agents like H2O2. This suggests that human sperm might be useful to test innovative new treatments like MLR, since such treatments could improve fertility when it is adversely affected by increased oxidative stress.


Assuntos
Glicerofosfolipídeos/química , Glicerofosfolipídeos/farmacologia , Micelas , Estresse Oxidativo/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Adulto , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Técnicas de Cultura , Fármacos para a Fertilidade Masculina/química , Fármacos para a Fertilidade Masculina/farmacologia , Glicerofosfolipídeos/metabolismo , Humanos , Masculino , Espermatozoides/metabolismo
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1287-1299, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27760387

RESUMO

The glycerophospholipids phosphatidylethanolamine, phosphatidylglycerol (PG), and cardiolipin (CL) are major structural components of bacterial membranes. In some bacteria, phosphatidylcholine or phosphatidylinositol and its derivatives form part of the membrane. PG or CL can be modified with the amino acid residues lysine, alanine, or arginine. Diacylglycerol is the lipid anchor from which syntheses of phosphorus-free glycerolipids, such as glycolipids, sulfolipids, or homoserine-derived lipids initiate. Many membrane lipids are subject to turnover and some of them are recycled. Other lipids associated with the membrane include isoprenoids and their derivatives such as hopanoids. Ornithine-containing lipids are widespread in Bacteria but absent in Archaea and Eukarya. Some lipids are probably associated exclusively with the outer membrane of many bacteria, i.e. lipopolysaccharides, sphingolipids, or sulfonolipids. For certain specialized membrane functions, specific lipid structures might be required. Upon cyst formation in Azotobacter vinelandii, phenolic lipids are accumulated in the membrane. Anammox bacteria contain ladderane lipids in the membrane surrounding the anammoxosome organelle, presumably to impede the passage of highly toxic compounds generated during the anammox reaction. Considering that present knowledge on bacterial lipids was obtained from only a few bacterial species, we are probably only starting to unravel the full scale of lipid diversity in bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Assuntos
Bactérias/metabolismo , Diglicerídeos/biossíntese , Glicerofosfolipídeos/biossíntese , Lipogênese , Lipídeos de Membrana/biossíntese , Diglicerídeos/química , Diglicerídeos/classificação , Glicerofosfolipídeos/química , Glicerofosfolipídeos/classificação , Lipídeos de Membrana/química , Lipídeos de Membrana/classificação , Estrutura Molecular , Relação Estrutura-Atividade
4.
Colloids Surf B Biointerfaces ; 141: 59-64, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836478

RESUMO

Preserving the catalytic activity of enzymes immobilized in bioelectronics devices is essential for optimal performance in biosensors. Therefore, ultrathin films in which the architecture can be controlled at the molecular level are of interest. In this work, the enzyme rhodanese was adsorbed onto Langmuir monolayers of the phospholipid dimyristoylphosphatidic acid and characterized by surface pressure-area isotherms, polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). The incorporation of the enzyme (5% in mol) in the lipid monolayer expanded the film, providing small surface domains, as visualized by BAM. Also, amide bands could be identified in the PM-IRRAS spectra, confirming the presence of the enzyme at the air-water interface. Structuring of the enzyme into α-helices was identified in the mixed monolayer and was preserved when the film was transferred from the liquid interface to solids supports as Langmuir-Blodgett (LB) films. The enzyme-lipid LB films were then characterized by fluorescence spectroscopy, PM-IRRAS, and atomic force microscopy. Measurements of the catalytic activity towards cyanide showed that the enzyme accommodated in the LB films preserved more than 87% of the enzyme activity in relation to the homogeneous medium. After 1 month, the enzyme in the LB film maintained 85% of the activity in contrast to the homogeneous medium, which 24% of the enzyme activity was kept. The method presented in this work not only points to an enhanced catalytic activity toward cyanide, but also may explain why certain film architectures exhibit an improved performance.


Assuntos
Enzimas Imobilizadas/metabolismo , Glicerofosfolipídeos/química , Tiossulfato Sulfurtransferase/metabolismo , Lipossomas Unilamelares/metabolismo , Adsorção , Técnicas Biossensoriais/métodos , Ensaios Enzimáticos , Enzimas Imobilizadas/química , Cinética , Microscopia de Força Atômica , Espectrometria de Fluorescência , Espectrofotometria Infravermelho , Propriedades de Superfície , Termodinâmica , Tiossulfato Sulfurtransferase/química , Lipossomas Unilamelares/química , Água/química
5.
Colloids Surf B Biointerfaces ; 116: 497-501, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24572493

RESUMO

The production of bioelectronic devices, including biosensors, can be conducted using enzymes immobilized in ultrathin solid films, for which preserving the enzymatic catalytic activity is crucial for optimal performance. In this sense, nanostructured films that allow for control over molecular architectures are of interest. In this paper, we investigate the adsorption of sucrose phosphorylase onto Langmuir monolayers of the phospholipid dimyristoylphosphatidic acid, which caused the surface pressure isotherms to expand. With polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), the amide bands from the enzyme could be identified, with the C-N and C=O dipole moments lying parallel to the air-water interface. Structuring of the enzyme into an α-helix was noted, and this structure was preserved when the mixed enzyme-phospholipid monolayer was transferred in the form of a Langmuir-Blodgett (LB) film. The latter was demonstrated with measurements of the catalytic activity of sucrose phosphorylase, which presented the highest enzyme activity for multilayer LB film. The approach presented in this study not only allows for optimized catalytic activity toward sucrose but also permits to explain why certain film architectures exhibit superior performance.


Assuntos
Glucosiltransferases/metabolismo , Glicerofosfolipídeos/metabolismo , Adsorção , Ativação Enzimática , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucosiltransferases/química , Glicerofosfolipídeos/química , Propriedades de Superfície
6.
Biochim Biophys Acta ; 1828(5): 1384-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23376656

RESUMO

Using phase contrast and fluorescence microscopy we study the influence of the alkylphospholipid, ALP, 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate, ODPC, in giant unilamellar vesicles, GUVs, composed of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), brain sphingomyelin (SM) and cholesterol (Chol). The results show that adding 100µM ODPC (below CMC) to the outer solution of GUVs promotes DOPC membrane disruption over a period of 1h of continuous observation. On the other hand, the presence of SM and Chol in homogeneous fluid lipid bilayers protects the membrane from disruption. Interestingly, by adding 100µM ODPC to GUVs containing DOPC:SM:Chol (1:1:1), which display liquid ordered (Lo)-liquid disordered (Ld) phase coexistence, the domains rapidly disappear in less than 1min of ODPC contact with the membrane. The lipids are subsequently redistributed to liquid domains within a time course of 14-18min, reflecting that the homogenous phase was not thermodynamically stable, followed by rupture of the GUVs. A similar mechanism of action is also observed for perifosine, although to a larger extent. Therefore, the initial stage of lipid raft disruption by both ODPC and perifosine, and maybe other ALPS, by promoting lipid mixing, may be correlated with their toxicity upon neoplastic cells, since selective (dis)association of essential proteins within lipid raft microdomains must take place in the plasma membrane.


Assuntos
Glicerofosfolipídeos/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Microdomínios da Membrana/química , Lipossomas Unilamelares/química , Colesterol/química , Fluidez de Membrana , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Modelos Químicos , Modelos Moleculares , Fosfatidilcolinas/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Esfingomielinas/química , Termodinâmica
7.
Colloids Surf B Biointerfaces ; 104: 48-53, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23298587

RESUMO

The influence from the chitosan molecular weight on its interaction with cell membrane models has been studied. A low molecular weight chitosan (LMWChi) adsorbed from the subphase expanded the surface pressure-area and surface potential-area isotherms of dimyristoyl phosphatidic acid (DMPA) monolayers and decreased the compressional modulus. The expansion in the monolayers and the decrease in the compressional modulus were larger for LMWChi than for a high molecular weight chitosan (Chi). The polymeric nature is still essential for the interaction though, which was demonstrated by measuring negligible changes in the mechanical properties of the DMPA monolayer when the subphase contained glucosamine and acetyl-glucosamine. The results were rationalized in a model through which chitosan interacted with the membrane via electrostatic and hydrophobic interactions, with the smaller chains of LMWChi having less steric hindrance to be accommodated in the membrane. In summary, the activity based on membrane interactions depends on the distribution of molar mass, with lower molecular weight chitosan more likely to have stronger effects.


Assuntos
Quitosana/química , Glicerofosfolipídeos/química , Adsorção , Quitosana/síntese química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Peso Molecular , Eletricidade Estática , Propriedades de Superfície
8.
J Sep Sci ; 35(18): 2438-44, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22907894

RESUMO

The combination of solid-phase microextraction (SPME) with comprehensive two-dimensional gas chromatography is evaluated here for fatty acid (FA) profiling of the glycerophospholipid fraction from human buccal mucosal cells. A base-catalyzed derivatization reaction selective for polar lipids such as glycerophospholipid was adopted. SPME is compared to a miniaturized liquid-liquid extraction procedure for the isolation of FA methyl esters produced in the derivatization step. The limits of detection and limits of quantitation were calculated for each sample preparation method. Because of its lower values of limits of detection and quantitation, SPME was adopted. The extracted analytes were separated, detected, and quantified by comprehensive two-dimensional gas chromatography with flame ionization detection (FID). The combination of SPME and comprehensive two-dimensional gas chromatography with FID, using a selective derivatization reaction in the preliminary steps, proved to be a simple and fast procedure for FA profiling, and was successfully applied to the analysis of adult human buccal mucosal cells.


Assuntos
Parede Celular/química , Ácidos Graxos/análise , Glicerofosfolipídeos/química , Mucosa Bucal/citologia , Microextração em Fase Sólida , Cromatografia Gasosa , Humanos
9.
J Colloid Interface Sci ; 376(1): 289-95, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22469069

RESUMO

Chitosans have been widely exploited in biological applications, including drug delivery and tissue engineering, especially owing to their mucoadhesive properties, but the molecular-level mechanisms for the chitosan action are not known in detail. It is believed that chitosan could affect the mucus by interacting with the proteins mucins, in a process mediated by the cell membrane. In this study we used Langmuir monolayers of dimyristoylphosphatidic acid (DMPA) as simplified membrane models to investigate the interplay between the activity of mucins and chitosan. Surface pressure and surface potential measurements were performed with DMPA monolayers onto which chitosan and/or mucin was adsorbed. We found that the expanding effect from mucin was considerably reduced when chitosan was injected after mucin had been adsorbed on the DMPA monolayer. The results were consistent with the formation of complexes between mucin and chitosan, thus highlighting the importance of electrostatic interactions. Furthermore, chitosan could remove mucin that was co-deposited along with DMPA in Langmuir-Blodgett (LB) films, which could be ascribed to molecular-level interactions between chitosan and mucin inferred from the FTIR spectra of the LB films. In conclusion, the results with Langmuir and LB films suggest that electrostatic interactions are crucial for the mucoadhesive mechanism, which is affected by the complexation between chitosan and mucin.


Assuntos
Quitosana/metabolismo , Glicerofosfolipídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Quitosana/química , Glicerofosfolipídeos/química , Glicoproteínas de Membrana/química , Membranas Artificiais , Mucinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Suínos
10.
Langmuir ; 28(12): 5398-403, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22375531

RESUMO

The search for optimized architectures, such as thin films, for the production of biosensors has been challenged in recent decades, and thus, the understanding of molecular interactions that occur at interfaces is essential to improve the construction of nanostructured devices. In this study, we investigated the possibility of using carbon nanotubes in hybrid Langmuir-Blodgett (LB) films of lipids and urease to improve the catalytic performance of the immobilized enzyme. The molecular interactions were first investigated at the air-water interface with the enzyme adsorbed from the aqueous subphase onto Langmuir monolayers of dimyristoylphosphatidic acid (DMPA). The transfer to solid supports as LB films and the subsequent incorporation of carbon nanotubes in the hybrid film permitted us to evaluate how these nanomaterials changed the physical properties of the ultrathin film. Colorimetric measurments indicated that the presence of nanotubes preserved and enhanced the enzyme activity of the film, even after 1 month. These results show that the use of such hybrid films is promising for the development of biosensors with an optimized performance.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas , Nanotubos de Carbono/química , Urease , Enzimas Imobilizadas/metabolismo , Glicerofosfolipídeos/química , Cinética , Bicamadas Lipídicas/química , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA