Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 976924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211971

RESUMO

The cell wall (CW) of fungi exhibits a complex structure and a characteristic chemical composition consisting almost entirely of interacting crystalline and amorphous polysaccharides. These are synthesized by a number of sugar polymerases and depolymerases encoded by a high proportion of the fungal genome (for instance, 20% in Saccharomyces cerevisiae). These enzymes act in an exquisitely coordinated process to assemble the tridimensional and the functional structure of the wall. Apart from playing a critical role in morphogenesis, cell protection, viability and pathogenesis, the CW represents a potential target for antifungals as most of its constituents do not exist in humans. Chitin, ß-glucans and cellulose are the most frequent crystalline polymers found in the fungal CW. The hexosamine biosynthesis pathway (HBP) is critical for CW elaboration. Also known as the Leloir pathway, this pathway ends with the formation of UDP-N-GlcNAc after four enzymatic steps that start with fructose-6-phosphate and L-glutamine in a short deviation of glycolysis. This activated aminosugar is used for the synthesis of a large variety of biomacromolecules in a vast number of organisms including bacteria, fungi, insects, crustaceans and mammalian cells. The first reaction of the HBP is catalyzed by GlcN-6-P synthase (L-glutamine:D-fructose-6-phosphate amidotransferase; EC 2.6.1.16), a critical enzyme that has been considered as a potential target for antifungals. The enzyme regulates the amount of cell UDP-N-GlcNAc and in eukaryotes is feedback inhibited by the activated aminosugar and other factors. The native and recombinant forms of GlcN-6-P synthase has been purified and characterized from both prokaryotic and eukaryotic organisms and demonstrated its critical role in CW remodeling and morphogenesis after exposure of some fungi to agents that stress the cell surface by interacting with wall polymers. This review deals with some of the cell compensatory responses of fungi to wall damage induced by Congo Red and Calcofluor White.


Assuntos
Sporothrix , beta-Glucanas , Animais , Antifúngicos , Benzenossulfonatos , Parede Celular/metabolismo , Celulose , Quitina , Vermelho Congo , Glutamina , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hexosaminas/análise , Hexosaminas/metabolismo , Humanos , Mamíferos/metabolismo , Polímeros/análise , Sporothrix/metabolismo , Açúcares , Difosfato de Uridina , beta-Glucanas/análise
2.
Arch Microbiol ; 201(1): 135-141, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30302500

RESUMO

Sporothrix schenckii is the etiological agent of sporotrichosis, a mycosis of humans and other mammals. Little is known about the responses of this thermodimorphic pathogen to perturbations in the cell wall (CW) by different stress conditions. Here we describe the effect of Congo Red (CR) on the fungal growth, morphogenesis and activity of glucosamine-6-phosphate (GlcN-6-P) synthase. Under conditions of yeast development, 15 µM CR abolished conidia (CN) germination, but when yeast cells were first obtained in the absence of the dye and then post-incubated in its presence, yeasts rapidly differentiated into mycelial cells. On the other hand, under conditions of mycelium development, 150 µM CR did not affect CN germination, but filamentous cells underwent structural changes characterized by a distorted CW contour, the loss of polarity and the formation of red-pigmented, hyphal globose structures. Under these conditions, CR also induced a significant and transient increase in the activity of GlcN-6-P synthase, an essential enzyme in CW biogenesis.


Assuntos
Vermelho Congo/farmacologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Sporothrix/crescimento & desenvolvimento , Sporothrix/metabolismo , Animais , Parede Celular/química , Humanos , Hifas/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Sporothrix/enzimologia , Esporotricose/microbiologia
3.
J Biol Chem ; 293(33): 12749-12758, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29954945

RESUMO

Hypertensive individuals are at greater risk for developing chronic kidney disease (CKD). Reducing proteinuria has been suggested as a possible therapeutic approach to treat CKD. However, the mechanisms underlying the development of proteinuria in hypertensive conditions are incompletely understood. Cardiac and vascular dysfunction is associated with changes in the O-GlcNAcylation pathway in hypertensive models. We hypothesized that O-GlcNAcylation is also involved in renal damage, especially development of proteinuria, associated with hypertension. Using the spontaneously hypertensive rat (SHR) model, we observed higher renal cortex O-GlcNAcylation, glutamine-fructose aminotransferase (GFAT), and O-GlcNAc transferase (OGT) protein expression, which positively correlated with proteinuria. Interestingly, this was observed in hypertensive, but not pre-hypertensive, rats. Pharmacological inhibition of GFAT decreased renal cortex O-GlcNAcylation, proteinuria, and albuminuria in SHR. Using a proximal tubule cell line, we observed that increased O-GlcNAcylation reduced megalin surface expression and albumin endocytosis in vitro, and the effects were correlated in vivo Moreover, megalin is O-GlcNAcylated both in vitro and in vivo In conclusion, our results demonstrate a new mechanism involved in hypertension-associated proteinuria.


Assuntos
Acetilglucosamina/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hipertensão/fisiopatologia , Túbulos Renais Proximais/patologia , Proteinúria/etiologia , Reabsorção Renal , Animais , Células Cultivadas , Endocitose , Glicosilação , Túbulos Renais Proximais/metabolismo , Masculino , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Proteinúria/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Suínos
4.
J Bacteriol ; 175(16): 5022-7, 1993 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8394312

RESUMO

Extracts of the aquatic fungus Blastocladiella emersonii were found to contain protein phosphatases type 1, type 2A, and type 2C with properties analogous to those found in mammalian tissues. The activities of all three protein phosphatases are developmentally regulated, increasing during sporulation, with maximum level in zoospores. Protein phosphatases 2A and 2C, present in zoospore extracts, catalyze the dephosphorylation of L-glutamine:fructose-6-phosphate amidotransferase (EC 2.6.1.16, amidotransferase), a key regulatory enzyme in hexosamine biosynthesis. The protein phosphatase inhibitor okadaic acid induces encystment and inhibits germ tube formation but does not affect the synthesis of the chitinous cell wall. These results strongly suggest that phosphatase 2C is responsible for the dephosphorylation of amidotransferase in vivo. This dephosphorylation is inhibited by uridine-5'-diphospho-N-acetylglucosamine, the end product of hexosamine synthesis and the substrate for chitin synthesis. This result demonstrates a dual role of uridine-5'-diphospho-N-acetylglucosamine by inhibiting the activity of the phosphorylated form of amidotransferase and by preventing its dephosphorylation by protein phosphatases.


Assuntos
Blastocladiella/metabolismo , Regulação Fúngica da Expressão Gênica , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hexosaminas/biossíntese , Fosfoproteínas Fosfatases/metabolismo , Blastocladiella/enzimologia , Blastocladiella/crescimento & desenvolvimento , Parede Celular/metabolismo , Quitina/metabolismo , Éteres Cíclicos/farmacologia , Ácido Okadáico , Fosfoproteínas Fosfatases/antagonistas & inibidores , Esporos Fúngicos/enzimologia , Esporos Fúngicos/metabolismo
5.
Arch Biochem Biophys ; 272(2): 301-10, 1989 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-2546495

RESUMO

The enzyme amidotransferase [2-amino-2-deoxy-D-glucose-6-phosphate ketol isomerase (amino-transferring); EC 2.6.1.16] catalyzes the first step in the hexosamine biosynthetic pathway. In Blastocladiella emersonii the sensitivity of the enzyme to the inhibitor uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc) is developmentally regulated. The inhibitable form of amidotransferase activity present in the zoospore is converted to a noninhibitable form during germination. The latter form is present throughout the growth phase and sensitivity to UDP-GlcNAc gradually returns to the zoospore level during sporulation [C.P. Selitrennikoff, N.E. Dalley, and D.R. Sonneborn (1980) Proc. Natl. Acad. Sci. USA 77, 5998-6002]. The following evidence suggests that a phosphorylation/dephosphorylation mechanism underlies this interconversion: (i) Both the vegetative and zoospore enzymes have the same molecular weight of 140,000, but the vegetative enzyme elutes significantly earlier on a DEAE-cellulose column than does the zoospore enzyme. (ii) The increased sensitivity to UDP-GlcNAc occurring in vivo and in vitro correlates with increased phosphorylation of a polypeptide of apparent Mr 76,000. This component copurifies with amidotransferase activity through ion-exchange chromatography and sucrose density gradient centrifugation. (iii) Desensitization and concurrent dephosphorylation of sensitive amidotransferase can be observed in vitro after treatment with a partially purified magnesium-dependent phosphoprotein phosphatase from zoospores.


Assuntos
Blastocladiella/enzimologia , Quitridiomicetos/enzimologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Transaminases/metabolismo , Centrifugação com Gradiente de Concentração , Cromatografia , Ativação Enzimática , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Peso Molecular , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Uridina Difosfato N-Acetilglicosamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA