Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Viruses ; 16(2)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399947

RESUMO

Nipah virus (NiV), a biosafety level 4 agent, was first identified in human clinical cases during an outbreak in 1998 in Malaysia and Singapore. While flying foxes are the primary host and viral vector, the infection is associated with a severe clinical presentation in humans, resulting in a high mortality rate. Therefore, NiV is considered a virus with an elevated epidemic potential which is further underscored by its recent emergence (September 2023) as an outbreak in India. Given the situation, it is paramount to understand the molecular dynamics of the virus to shed more light on its evolution and prevent potential future outbreaks. In this study, we conducted Bayesian phylogenetic analysis on all available NiV complete genomes, including partial N-gene NiV sequences (≥1000 bp) in public databases since the first human case, registered in 1998. We observed the distribution of genomes into three main clades corresponding to the genotypes Malaysia, Bangladesh and India, with the Malaysian clade being the oldest in evolutionary terms. The Bayesian skyline plot showed a recent increase in the viral population size since 2019. Protein analysis showed the presence of specific protein families (Hendra_C) in bats that might keep the infection in an asymptomatic state in bats, which also serve as viral vectors. Our results further indicate a shortage of complete NiV genomes, which would be instrumental in gaining a better understanding of NiV's molecular evolution and preventing future outbreaks. Our investigation also underscores the critical need to strengthen genomic surveillance based on complete NiV genomes that will aid thorough genetic characterization of the circulating NiV strains and the phylogenetic relationships between the henipaviruses. This approach will better prepare us to tackle the challenges posed by the NiV virus and other emerging viruses.


Assuntos
Quirópteros , Infecções por Henipavirus , Vírus Nipah , Animais , Humanos , Vírus Nipah/genética , Filogenia , Teorema de Bayes , Variação Genética
3.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298723

RESUMO

The viral genus Henipavirus includes two highly virulent zoonotic viruses of serious public health concern. Hendra henipavirus and Nipah henipavirus outbreaks are restricted to Australia and Southeast Asia, respectively. The Henipavirus genus comprises mostly bat-borne viruses, but exceptions have already been described as novel viruses with rodents and shrews as reservoir animals. In the Americas, scarce evidence supports the circulation of these viruses. In this communication, we report a novel henipa-like virus from opossums (Marmosa demerarae) from a forest fragment area in the Peixe-Boi municipality, Brazil, after which the virus was named the Peixe-Boi virus (PBV). The application of next-generation sequencing and metagenomic approach led us to discover the original evidence of a henipa-like virus genome in Brazil and South America and the original description of a henipa-like virus in marsupial species. These findings emphasize the importance of further studies to characterize PBV and clarify its ecology, impact on public health, and its relationship with didelphid marsupials and henipaviruses.


Assuntos
Quirópteros , Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Animais , Infecções por Henipavirus/epidemiologia , Brasil/epidemiologia , Genômica
4.
Geroscience ; 44(5): 2447-2459, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36219280

RESUMO

Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic zoonotic viruses of the genus Henipavirus, family Paramyxoviridae that cause severe disease outbreaks in humans and also can infect and cause lethal disease across a broad range of mammalian species. Another related Henipavirus has been very recently identified in China in febrile patients with pneumonia, the Langya virus (LayV) of probable animal origin in shrews. NiV and HeV were first identified as the causative agents of severe respiratory and encephalitic disease in the 1990s across Australia and Southern Asia with mortality rates reaching up to 90%. They are responsible for rare and sporadic outbreaks with no approved treatment modalities. NiV and HeV have wide cellular tropism that contributes to their high pathogenicity. From their natural hosts bats, different scenarios propitiate their spillover to pigs, horses, and humans. Henipavirus-associated respiratory disease arises from vasculitis and respiratory epithelial cell infection while the neuropathogenesis of Henipavirus infection is still not completely understood but appears to arise from dual mechanisms of vascular disease and direct parenchymal brain infection. This brief review offers an overview of direct and indirect mechanisms of HeV and NiV pathogenicity and their interaction with the human immune system, as well as the main viral strategies to subvert such responses.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Animais , Suínos , Cavalos , Saúde Pública , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Mamíferos
5.
Viruses ; 14(7)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35891503

RESUMO

Nipah virus (NiV) is a zoonotic paramyxovirus with a fatality rate of up to 92% in humans. While several pathogenic mechanisms used by NiV to counteract host immune defense responses have been described, all of the processes that take place in cells during infection are not fully characterized. Here, we describe the formation of ordered intracellular structures during NiV infection. We observed that these structures are formed specifically during NiV infection, but not with other viruses from the same Mononegavirales order (namely Ebola virus) or from other orders such as Bunyavirales (Junín virus). We also determined the kinetics of the appearance of these structures and their cellular localization at the cellular periphery. Finally, we confirmed the presence of these NiV-specific ordered structures using structured illumination microscopy (SIM), as well as their localization by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and correlative light and electron microscopy (CLEM). Herein, we describe a cytopathogenic mechanism that provides a new insight into NiV biology. These newly described ordered structures could provide a target for novel antiviral approaches.


Assuntos
Ebolavirus , Infecções por Henipavirus , Vírus Nipah , Paramyxovirinae , Antivirais , Humanos , Vírus Nipah/fisiologia
6.
J Infect Dis ; 221(Suppl 4): S375-S382, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32034942

RESUMO

Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.


Assuntos
Quirópteros/virologia , Infecções por Filoviridae/veterinária , Filoviridae , Infecções por Henipavirus/veterinária , Henipavirus , Animais , Quirópteros/sangue , Quirópteros/classificação , Infecções por Filoviridae/epidemiologia , Infecções por Filoviridae/virologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia , Testes Sorológicos , Trinidad e Tobago/epidemiologia
7.
Vector Borne Zoonotic Dis ; 17(4): 271-274, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28103156

RESUMO

Bats are reservoir hosts for many paramyxoviruses, some of which cause human and zoonotic diseases of public health importance. We developed a Nipah virus nucleoprotein enzyme-linked immunosorbent assay to detect cross-reactive antibodies in serum samples from several bat species in Brazil. Our results warrant further investigation of henipa-like virus reservoirs in the Western hemisphere.


Assuntos
Quirópteros/virologia , Infecções por Henipavirus/veterinária , Henipavirus/imunologia , Animais , Brasil/epidemiologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/virologia
8.
Vaccine ; 29(2): 212-20, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21050901

RESUMO

The emergence of Hendra Virus (HeV) and Nipah Virus (NiV) which can cause fatal infections in both animals and humans has triggered a search for an effective vaccine. Here, we have explored the potential for generating an effective humoral immune response to these zoonotic pathogens using an alphavirus-based vaccine platform. Groups of mice were immunized with Venezuelan equine encephalitis virus replicon particles (VRPs) encoding the attachment or fusion glycoproteins of either HeV or NiV. We demonstrate the induction of highly potent cross-reactive neutralizing antibodies to both viruses using this approach. Preliminary study suggested early enhancement in the antibody response with use of a modified version of VRP. Overall, these data suggest that the use of an alphavirus-derived vaccine platform might serve as a viable approach for the development of an effective vaccine against the henipaviruses.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus da Encefalite Equina Venezuelana/genética , Vírus Hendra/imunologia , Infecções por Henipavirus/prevenção & controle , Vírus Nipah/imunologia , Animais , Feminino , Expressão Gênica , Vetores Genéticos , Vírus Hendra/genética , Infecções por Henipavirus/imunologia , Camundongos , Camundongos Endogâmicos C3H , Vírus Nipah/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA