Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(6): e0217684, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31170201

RESUMO

Clara cells are the main airway secretory cells able to regenerate epithelium in the distal airways through transdifferentiating into goblet cells, a process under negative regulation of the Notch pathway. Pneumocystis is a highly prevalent fungus in humans occurring between 2 and 5 months of age, a period when airways are still developing and respiratory morbidity typically increases. Pneumocystis induces mucus hyperproduction in immunocompetent host airways and whether it can stimulate Clara cells is unknown. Markers of Clara cell secretion and Notch1 activation were investigated in lungs of immunocompetent rats at 40, 60, and 80 days of age during Pneumocystis primary infection with and without Valproic acid (VPA), a Notch inducer. The proportion of rats expressing mucin increased in Pneumocystis-infected rats respect to controls at 60 and 80 days of age. Frequency of distal airways Clara cells was maintained while mRNA levels for the mucin-encoding genes Muc5B and Muc5ac in lung homogenates increased 1.9 and 3.9 times at 60 days of infection (P. = 0.1609 and P. = 0.0001, respectively) and protein levels of the Clara cell marker CC10 decreased in the Pneumocystis-infected rats at 60 and 80 days of age (P. = 0.0118 & P. = 0.0388). CC10 and Muc5b co-localized in distal airway epithelium of Pneumocystis-infected rats at day 60. Co-localization of Muc5b and Ki67 as marker of mitosis in distal airways was not observed suggesting that Muc5b production by Clara cells was independent of mitosis. Notch levels remained similar and no transnucleation of activated Notch associated to Pneumocystis infection was detected. Unexpectedly, mucus was greatly increased at day 80 in Pneumocystis-infected rats receiving VPA suggesting that a Notch-independent mechanism was triggered. Overall, data suggests a Clara to goblet cell transdifferentiation mechanism induced by Pneumocystis and independent of Notch.


Assuntos
Pulmão/metabolismo , Pulmão/microbiologia , Mucina-5AC/biossíntese , Mucina-5B/biossíntese , Infecções por Pneumocystis/metabolismo , Infecções por Pneumocystis/microbiologia , Pneumocystis/patogenicidade , Receptores Notch/metabolismo , Animais , Transdiferenciação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Antígeno Ki-67/metabolismo , Mitose/efeitos dos fármacos , Mucina-5AC/genética , Mucina-5AC/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Pneumocystis/efeitos dos fármacos , Infecções por Pneumocystis/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Uteroglobina/metabolismo , Ácido Valproico/farmacologia
2.
Sci Rep ; 9(1): 2078, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765827

RESUMO

Airway mucus responses to subclinical infections may explain variations in progression of chronic lung diseases and differences in clinical expression of respiratory infections across individuals. Pneumocystis associates to more severe Chronic Obstructive Pulmonary Disease (COPD), asthma, respiratory distress of premature newborns, and is a consistent subclinical infection between 2 and 5 months of age when hospitalizations for respiratory cause and infant mortality are higher. This atypical fungus associates to increased mucin 5AC (MUC5AC), a central effector of Th2-type allergic inflammation, in infant lungs. However, mucus progression, expression of MUC5B essential for airway defense, and potential for pharmacologic modulation of mucus during Pneumocystis infection remain unknown. We measured MUC5B and Pneumocystis in infant lungs, and progression of mucin levels and effect of inhibition of the STAT6/FoxA2 mucus pathway using Kaempferol, a JAK/STAT6 inhibitor, in immunocompetent rats during Pneumocystis primary infection. Pneumocystis associated to increased MUC5B in infant lungs. Muc5b increased earlier and more abundantly than Muc5ac during experimental primary infection suggesting an acute defensive response against Pneumocystis as described against bacteria, while increased Muc5ac levels supports an ongoing allergic, Th2 lymphocyte-type response during primary Pneumocystis infection. Kaempferol partly reversed Muc5b stimulation suggesting limited potential for pharmacological modulation via the STAT6-FoxA2 pathway.


Assuntos
Mucina-5B/metabolismo , Infecções por Pneumocystis/metabolismo , Mucosa Respiratória/metabolismo , Animais , Asma/metabolismo , Células Epiteliais/metabolismo , Feminino , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Lactente , Recém-Nascido , Inflamação/metabolismo , Pulmão/metabolismo , Masculino , Mucina-5B/genética , Mucinas/genética , Mucinas/metabolismo , Muco/metabolismo , Pneumocystis/patogenicidade , Pneumonia por Pneumocystis/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA