Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 100(21): 9201-9215, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27448399

RESUMO

Lactic acid bacteria (LAB) have many applications in food and industrial fermentations. Prophage induction and generation of new virulent phages is a risk for the dairy industry. We identified three complete prophages (PLE1, PLE2, and PLE3) in the genome of the well-studied probiotic strain Lactobacillus casei BL23. All of them have mosaic architectures with homologous sequences to Streptococcus, Lactococcus, Lactobacillus, and Listeria phages or strains. Using a combination of quantitative real-time PCR, genomics, and proteomics, we showed that PLE2 and PLE3 can be induced-but with different kinetics-in the presence of mitomycin C, although PLE1 remains as a prophage. A structural analysis of the distal tail (Dit) and tail associated lysin (Tal) baseplate proteins of these prophages and other L. casei/paracasei phages and prophages provides evidence that carbohydrate-binding modules (CBM) located within these "evolved" proteins may replace receptor binding proteins (RBPs) present in other well-studied LAB phages. The detailed study of prophage induction in this prototype strain in combination with characterization of the proteins involved in host recognition will facilitate the design of new strategies for avoiding phage propagation in the dairy industry.


Assuntos
Lacticaseibacillus casei/genética , Lacticaseibacillus casei/virologia , Prófagos/genética , Prófagos/fisiologia , Ativação Viral , Microbiologia de Alimentos , Mitomicina/metabolismo , Inibidores da Síntese de Ácido Nucleico/metabolismo , Proteínas da Cauda Viral/genética
2.
Cell Mol Biol (Noisy-le-grand) ; 47(5): 801-14, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11728094

RESUMO

In this work we present evidence that water molecules are actively involved on the control of binding affinity and binding site discrimination of a drug to natural DNA. In a previous study, the effect of water activity (a(w)) on the energetic parameters of actinomycin-D intercalation to natural DNA was determined using the osmotic stress method (39). This earlier study has shown evidence that water molecules act as an allosteric regulator of ligand binding to DNA via the effect of water activity on the long-range stability of the DNA secondary structure. In this work we have carried out DNA circularization experiments using the plasmid pUC18 in the absence of drugs and in the presence of different neutral solutes to evaluate the contribution of water activity to the energetics of DNA helix unwinding. The contribution of water to these independent reactions were made explicit by the description of how the changes in the free energy of ligand binding to DNA and in the free energy associated with DNA helix torsional deformation are linked to a(w) via changes in structural hydration. Taken together, the results of these studies reveal an extensive linkage between ligand binding affinity and site binding discrimination, and long range helix conformational changes and DNA hydration. This is strong evidence that water molecules work as a classical allosteric regulator of ligand binding to the DNA via its contribution to the stability of the double helix secondary structure, suggesting a possible mechanism by which the biochemical machinery of DNA processing takes advantage of the low activity of water into the cellular milieu.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Água/química , Soluções Tampão , DNA/metabolismo , Dactinomicina/química , Dactinomicina/metabolismo , Eletroforese , Ligantes , Matemática , Inibidores da Síntese de Ácido Nucleico/química , Inibidores da Síntese de Ácido Nucleico/metabolismo
3.
Biopolymers ; 53(1): 46-59, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10644950

RESUMO

Actinomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA sequence and solution conditions, and the interaction appears to be purely entropic driven. Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We show that the decrease of solution water activity, due to the addition of sucrose, glycerol, ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity delta G, and the number of DNA base pairs apparently occupied by the bound drug nbp/actD. These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(chi w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site nbp/actD. This indicates that nbp/actD, measured from the Scatchard plot, is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by nbp/actD, to the total free energy of binding delta G, is given by delta G = delta Glocal + nbp/actD x delta GDNA, where delta Glocal = -8020 +/- 51 cal/mol of actD bound and delta GDNA = -24.1 +/- 1.7 cal/mol of base pair at 25 degrees C. We interpret delta Glocal as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and nbp/actD x delta GDNA as that due to the change in conformation, induced by binding, of nbp/actD DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta GDNA and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the "size" of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription.


Assuntos
Antibióticos Antineoplásicos/química , DNA/química , Dactinomicina/química , Conformação de Ácido Nucleico , Inibidores da Síntese de Ácido Nucleico/química , Água/química , Animais , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Sítios de Ligação , Bovinos , DNA/metabolismo , Dactinomicina/metabolismo , Dactinomicina/farmacologia , Inibidores da Síntese de Ácido Nucleico/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA