Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0198223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411106

RESUMO

Continuously emerging highly pathogenic coronaviruses remain a major threat to human and animal health. Porcine deltacoronavirus (PDCoV) is a newly emerging enterotropic swine coronavirus that causes large-scale outbreaks of severe diarrhea disease in piglets. Unlike other porcine coronaviruses, PDCoV has a wide range of species tissue tropism, including primary human cells, which poses a significant risk of cross-species transmission. Nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) has a key role in linking host innate immunity to microbes and the regulation of inflammatory pathways. We now report a role for NLRP1 in the control of PDCoV infection. Overexpression of NLRP1 remarkably suppressed PDCoV infection, whereas knockout of NLRP1 led to a significant increase in PDCoV replication. A mechanistic study revealed that NLRP1 suppressed PDCoV replication in cells by upregulating IL-11 expression, which in turn inhibited the phosphorylation of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor U0126 effectively hindered PDCoV replication in pigs. Together, our results demonstrated that NLRP1 exerted an anti-PDCoV effect by IL-11-mediated inhibition of the phosphorylation of the ERK signaling pathway, providing a novel antiviral signal axis of NLRP1-IL-11-ERK. This study expands our understanding of the regulatory network of NLRP1 in the host defense against virus infection and provides a new insight into the treatment of coronaviruses and the development of corresponding drugs.IMPORTANCECoronavirus, which mainly infects gastrointestinal and respiratory epithelial cells in vivo, poses a huge threat to both humans and animals. Although porcine deltacoronavirus (PDCoV) is known to primarily cause fatal diarrhea in piglets, reports detected in plasma samples from Haitian children emphasize the potential risk of animal-to-human spillover. Finding effective therapeutics against coronaviruses is crucial for controlling viral infection. Nucleotide-binding oligomerization-like receptor (NLR) family pyrin domain-containing 1 (NLRP1), a key regulatory factor in the innate immune system, is highly expressed in epithelial cells and associated with the pathogenesis of viruses. We demonstrate here that NLRP1 inhibits the infection of the intestinal coronavirus PDCoV through IL-11-mediated phosphorylation inhibition of the ERK signaling pathway. Furthermore, the ERK phosphorylation inhibitor can control the infection of PDCoV in pigs. Our study emphasizes the importance of NLRP1 as an immune regulatory factor and may open up new avenues for the treatment of coronavirus infection.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Doenças dos Suínos , Animais , Criança , Humanos , Diarreia , Haiti , Interleucina-11/metabolismo , Proteínas NLR/metabolismo , Nucleotídeos/metabolismo , Fosforilação , Transdução de Sinais , Suínos , Zoonoses/metabolismo
2.
PLoS Negl Trop Dis ; 14(7): e0007656, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687542

RESUMO

Platelets drive endothelial cell activation in many diseases. However, if this occurs in Plasmodium vivax malaria is unclear. As platelets have been reported to be activated and to play a role in inflammatory response during malaria, we hypothesized that this would correlate with endothelial alterations during acute illness. We performed platelet flow cytometry of PAC-1 and P-selectin. We measured platelet markers (CXCL4, CD40L, P-selectin, Thrombopoietin, IL-11) and endothelial activation markers (ICAM-1, von Willebrand Factor and E-selectin) in plasma with a multiplex-based assay. The values of each mediator were used to generate heatmaps, K-means clustering and Principal Component analysis. In addition, we determined pair-wise Pearson's correlation coefficients to generate correlation networks. Platelet counts were reduced, and mean platelet volume increased in malaria patients. The activation of circulating platelets in flow cytometry did not differ between patients and controls. CD40L levels (Median [IQ]: 517 [406-651] vs. 1029 [732-1267] pg/mL, P = 0.0001) were significantly higher in patients, while P-selectin and CXCL4 showed a nonsignificant trend towards higher levels in patients. The network correlation approach demonstrated the correlation between markers of platelet and endothelial activation, and the heatmaps revealed a distinct pattern of activation in two subsets of P. vivax patients when compared to controls. Although absolute platelet activation was not strong in uncomplicated vivax malaria, markers of platelet activity and production were correlated with higher endothelial cell activation, especially in a specific subset of patients.


Assuntos
Plaquetas/citologia , Malária Vivax/sangue , Adulto , Plaquetas/metabolismo , Ligante de CD40/genética , Ligante de CD40/metabolismo , Selectina E/genética , Selectina E/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Malária Vivax/genética , Malária Vivax/metabolismo , Masculino , Selectina-P/genética , Selectina-P/metabolismo , Ativação Plaquetária , Contagem de Plaquetas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA