Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930828

RESUMO

The development of new compounds to treat Chagas disease is imperative due to the adverse effects of current drugs and their low efficacy in the chronic phase. This study aims to investigate nitroisoxazole derivatives that produce oxidative stress while modifying the compounds' lipophilicity, affecting their ability to fight trypanosomes. The results indicate that these compounds are more effective against the epimastigote form of T. cruzi, with a 52 ± 4% trypanocidal effect for compound 9. However, they are less effective against the trypomastigote form, with a 15 ± 3% trypanocidal effect. Additionally, compound 11 interacts with a higher number of amino acid residues within the active site of the enzyme cruzipain. Furthermore, it was also found that the presence of a nitro group allows for the generation of free radicals; likewise, the large size of the compound enables increased interaction with aminoacidic residues in the active site of cruzipain, contributing to trypanocidal activity. This activity depends on the size and lipophilicity of the compounds. The study recommends exploring new compounds based on the nitroisoxazole skeleton, with larger substituents and lipophilicity to enhance their trypanocidal activity.


Assuntos
Isoxazóis , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Isoxazóis/química , Isoxazóis/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/antagonistas & inibidores , Relação Estrutura-Atividade , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Animais , Domínio Catalítico , Estrutura Molecular
2.
Braz J Microbiol ; 55(2): 1811-1816, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38739216

RESUMO

As the prevalence of drug-resistant Candida isolates continues to rise, the imperative for identifying novel compounds to enhance the arsenal of antifungal drugs becomes increasingly critical. Consequently, exploring new treatment strategies, including synthesizing molecular hybrids and applying combination therapy, is essential. For this reason, this study evaluated the efficacy of ten molecular hybrids of aza-bicyclic 2-isoxazoline-acylhydrazone belonging to two series 90 and 91 as possible anti-Candida agents. In addition, we also investigated the interaction between the hybrids and fluconazole, a commonly used antifungal drug. We evaluated the antifungal effect of aza-bicyclic 2-isoxazoline-acylhydrazone hybrid compounds against six Candida spp. strains that target planktonic cells. However, none of these new molecules were inhibitory active at the tested concentrations (2 to 1,024 µg/mL). Moreover, we analyzed the interaction between the ten new hybrid molecules and fluconazole using the checkerboard assay, employing two different methodologies for reading the plate. For this, one isolate fluconazole-resistant was selected. We observed that only one combination, 6-(4-tert-butylbenzoil)-4,5,6,6a-tetrahydro-3a-H-pirrole[3,2-d]isoxazole-3-carboxylic(furan-2-metilidene)-hydrazide (91e) and fluconazole, exhibited a synergistic interaction (FICI range 0.0781 to 0.4739). The combination successfully inhibited the growth of C. albicans CA2 fluconazole-resistant, and no interaction was observed in an isolate susceptible to fluconazole. Additionally, these results emphasize the continued need for research into new compounds and the importance of using combined approaches to increase their activity.


Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Fúngica , Sinergismo Farmacológico , Fluconazol , Hidrazonas , Isoxazóis , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química , Fluconazol/farmacologia , Candida albicans/efeitos dos fármacos , Hidrazonas/farmacologia , Hidrazonas/química , Isoxazóis/farmacologia , Isoxazóis/química , Humanos
3.
Eur J Med Chem ; 260: 115451, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37573209

RESUMO

Chagas disease and leishmaniasis are neglected diseases of high priority as a public health problem. Pharmacotherapy is based on the administration of a few drugs, which exhibit hazardous adverse effects and toxicity to the patients. Thus, the search for new antitrypanosomatid drugs is imperative to overcome the limitations of the treatments. In this work, 46 2-nitroimidazole 3,5-disubstituted isoxazole compounds were synthesized in good yields by [3 + 2] cycloaddition reaction between terminal acetylene (propargyl-2-nitroimidazole) and chloro-oximes. The compounds were non-toxic to LLC-MK2 cells. Compounds 30, 35, and 44 showed in vitro antichagasic activity, 15-fold, 12-fold, and 10-fold, respectively, more active than benznidazole (BZN). Compounds 30, 35, 44, 45, 53, and 61 acted as substrates for the TcNTR enzyme, indicating that this might be one of the mechanisms of action involved in their antiparasitic activity. Piperazine series and 4-monosubstituted compounds were potent against T. cruzi parasites. Besides the in vitro activity observed in compound 45, the in vivo assay showed that the compound only reduced the parasitemia levels by the seventh-day post-infection (77%, p > 0.001) compared to the control group. However, 45 significantly reduced the parasite load in cardiac tissue (p < 0.01) 11 days post-infection. Compounds 49, 52, and 54 showed antileishmanial activity against intracellular amastigotes of Leishmania (L.) amazonensis at the same range as amphotericin B. These findings highlight the antitrypanosomatid properties of 2-nitroimidazole 3,5-disubstituted isoxazole compounds and the possibility in using them as antitrypanosomatid agents in further studies.


Assuntos
Antiprotozoários , Doença de Chagas , Nitroimidazóis , Trypanosoma cruzi , Humanos , Antiprotozoários/química , Doença de Chagas/tratamento farmacológico , Isoxazóis/química , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Relação Estrutura-Atividade , Reação de Cicloadição
4.
Arch Pharm (Weinheim) ; 356(4): e2200472, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534890

RESUMO

Chagas disease (CD) is a neglected disease caused by the protozoan Trypanosoma cruzi. The two drugs used in the treatment schedules exhibit adverse effects and severe toxicity. Thus, searching for new antitrypanosomal agents is urgent to provide improved treatments to those affected by this disease. 5-Nitrofuran-isoxazole analogs were synthesized by cycloaddition reactions [3+2] between chloro-oximes and acetylenes in satisfactory yields. We analyzed the structure-activity relationship of the analogs based on Hammett's and Hansch's parameters. The 5-nitrofuran-isoxazole analogs exhibited relevant in vitro antitrypanosomal activity against the amastigote forms of T. cruzi. Analog 7s was the trending hit of the series, showing an IC50 value of 40 nM and a selectivity index of 132.50. A possible explanation for this result may be the presence of an electrophile near the isoxazole core. Moreover, the most active analogs proved to act as an in vitro substrate of type I nitroreductase rather than the cruzain, enzymes commonly investigated in molecular target studies of CD drug discovery. These findings suggest that 5-nitrofuran-isoxazole analogs are promising in the studies of agents for CD treatment.


Assuntos
Nitrofuranos , Tripanossomicidas , Trypanosoma cruzi , Relação Estrutura-Atividade , Isoxazóis/farmacologia , Isoxazóis/química , Reposicionamento de Medicamentos , Nitrofuranos/farmacologia , Nitrofuranos/química , Tripanossomicidas/farmacologia , Tripanossomicidas/química
5.
Org Biomol Chem ; 19(7): 1514-1531, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33332518

RESUMO

In this work, we describe the application of a synthetic enzyme (synzyme) as the catalyst to promote the multicomponent synthesis of isoxazol-5(4H)-one derivatives. The catalytic system could be used up to 15 times without any notable loss of its activity. Some derivatives showed fluorescence and their photophysical data were evaluated. The mechanism of the reaction was, for the first time, investigated and, among the three reaction pathway possibilities, only one was operating under the developed conditions. ESI-MS(/MS) allowed for both the simultaneous monitoring of the multicomponent reaction (MCR) and the proposition of a kinetic model to explain the transformation. The kinetic model pointed firmly to only one reaction pathway and helped to discard the other two possibilities. The antimicrobial abilities of all synthesized derivatives against Gram-positive and Gram-negative strains were also evaluated. The abilities of functional chromophores (fluorescent compounds) as live cell-imaging probes were verified and one of the multicomponent adducts could stain early endosomes selectively in bioimaging experiments.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Isoxazóis/farmacologia , Peptídeos/química , Antibacterianos/síntese química , Antibacterianos/química , Catálise , Isoxazóis/síntese química , Isoxazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
6.
Bioorg Med Chem ; 30: 115934, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360575

RESUMO

Isoxazoline is a 5-membered heterocycle present in the active compounds of many commercial veterinary anti-ectoparasitic products. The molecular target of isoxazolines is the inhibition of GABA-gated chloride channels in insects. These facts have inspired the use of the isoxazoline scaffold in the design of novel insecticide compounds. The main strategies used for isoxazoline synthesis are either the 1,3-dipolar cycloaddition between a nitrile oxide and an alkene or the reaction between hydroxylamine and an α,ß-unsaturated carbonyl compound. This review highlights the utilization of isoxazoline as insecticide: its mode of action, its commercial preparations and its consideration in the design of novel insecticides. Similarity analyses were performed with 235 isoxazoline derivatives in three different cheminformatic approaches - chemical property correlations, similarity network and compound clustering. The cheminformatic methodologies are interesting tools to use in evaluating the similarity between commercial isoxazolines and to clarify the main features explored within their derivatives.


Assuntos
Desenvolvimento de Medicamentos , Insetos/efeitos dos fármacos , Inseticidas/farmacologia , Isoxazóis/farmacologia , Animais , Inseticidas/síntese química , Inseticidas/química , Isoxazóis/síntese química , Isoxazóis/química , Estrutura Molecular , Receptores de GABA/metabolismo
7.
Bioorg Med Chem Lett ; 30(14): 127247, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527547

RESUMO

A series of levoglucosenone-derived 1,2,3-triazoles and isoxazoles featuring a flexible spacer between the heteroaromatic and anhydropyranose cores have been designed and synthesized following an hetero Michael // 1,3-dipolar cycloaddition path. The use of a design of experiments approach allowed the optimization of the oxa-Michael reaction with propargyl alcohol as nucleophile, a key step for the synthesis of the target compounds. All of the compounds were tested for their anticancer activity on MDA-MB-231 cells, featuring mutant p53. The results highlighted the importance of the introduction of the flexible spacer as well as the higher activity of oxa-Michael isoxazole-derivatives. The most prominent compounds also showed anti-proliferative activities against lung and colon cancer cell lines. The compounds showed enhanced cytotoxic effects in the presence of mutant p53, determined both by endogenous mutant p53 knock down (R280K) and by reintroducing p53 R280K in cells lacking p53 expression.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Desenho de Fármacos , Glucose/análogos & derivados , Isoxazóis/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glucose/síntese química , Glucose/química , Glucose/farmacologia , Humanos , Isoxazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química
8.
Molecules ; 25(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252252

RESUMO

Trypanosoma cruzi is the aetiologic agent of Chagas disease, which affects people in the Americas and worldwide. The parasite has a complex life cycle that alternates among mammalian hosts and insect vectors. During its life cycle, T. cruzi passes through different environments and faces nutrient shortages. It has been established that amino acids, such as proline, histidine, alanine, and glutamate, are crucial to T. cruzi survival. Recently, we described that T. cruzi can biosynthesize glutamine from glutamate and/or obtain it from the extracellular environment, and the role of glutamine in energetic metabolism and metacyclogenesis was demonstrated. In this study, we analysed the effect of glutamine analogues on the parasite life cycle. Here, we show that glutamine analogues impair cell proliferation, the developmental cycle during the infection of mammalian host cells and metacyclogenesis. Taken together, these results show that glutamine is an important metabolite for T. cruzi survival and suggest that glutamine analogues can be used as scaffolds for the development of new trypanocidal drugs. These data also reinforce the supposition that glutamine metabolism is an unexplored possible therapeutic target.


Assuntos
Glutamina/análogos & derivados , Estágios do Ciclo de Vida/efeitos dos fármacos , Tripanossomicidas/farmacologia , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Azasserina/química , Azasserina/farmacologia , Células CHO , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cricetulus , Metabolismo Energético/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Isoxazóis/química , Isoxazóis/farmacologia , Estrutura Molecular , Tripanossomicidas/química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
9.
Chembiochem ; 21(17): 2474-2486, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32282111

RESUMO

This paper reports the design, synthesis and cytotoxicity studies of two new isoxazole-derived aroylhydrazone ligands and their dinuclear copper(II) complexes. Compounds were fully characterized by various spectroscopic and analytical techniques. The molecular structures of four derivatives were confirmed by X-ray crystallography. The stability of the ligands and the complexes in aqueous medium was monitored spectroscopically. Both the ligands and the complexes were shown to interact with calf thymus DNA (ct-DNA). Additionally, structures containing a phenol pendant arm were significantly more cytotoxic than those carrying a pendant pyridine substituent, reaching sub-micromolar IC50 values on the triple-negative human breast cancer cell line MDA-MB-231. The metal chelation and transchelation ability of the compounds towards FeII , FeIII and ZnII ions was explored as a possible mechanism of action of these compounds.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Hidrazonas/farmacologia , Isoxazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/patologia , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , DNA/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Hidrazonas/química , Isoxazóis/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
J Environ Sci Health B ; 55(6): 558-565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32107966

RESUMO

Glyphosate is the main herbicide currently used in the world due to wide applicability and efficiency in controlling weeds in many crops. However, its overuse may lead to undesirable impacts on the environment and to human health in the long run. This present study aimed to optimize and validate solid phase extraction (SPE) using an anionic resin for the simultaneous and direct determination of glyphosate and aminomethylphosphonic acid (AMPA) in water samples using high-performance liquid chromatography combined with inductively coupled plasma with triple quadrupole mass spectrometer (HPLC-ICP-MS/MS). The results showed that recovery percentage and relative standard deviation were 103.9 ± 7.9 and 99.40 ± 9.9% for glyphosate and AMPA, respectively. The validation certified that the method was precise, accurate, linear, and selective, with a limit of quantification of 1.09 and 0.29 µg L-1 for glyphosate and AMPA, respectively. The optimized methodology reached the concentration factor of 250 times and was successfully applied to analyze water samples from hydroponic cultivation of the eucalyptus seedlings. The results showed that the exudation process occurs at glyphosate doses starting from 2 L ha-1.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Glicina/análogos & derivados , Isoxazóis/química , Tetrazóis/química , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/métodos , Glicina/análise , Glicina/isolamento & purificação , Herbicidas/análise , Hidroponia , Limite de Detecção , Reprodutibilidade dos Testes , Plântula/crescimento & desenvolvimento , Extração em Fase Sólida , Espectrometria de Massas em Tandem/métodos , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA