Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Food Microbiol ; 119: 104429, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225038

RESUMO

Previous metagenomic analyses have suggested that lactobacilli present potential for Quorum Sensing (QS) in cocoa fermentation, and in the present research, laboratory scale fermentations were carried out to monitor the expression of luxS, a universal marker of QS. For that, 96 h-fermentations were studied, as follows: F0 (non inoculated control), F1 (inoculated with yeasts, lactic acid bacteria, and acetic acid bacteria), F2 (inoculated with yeasts and acetic acid bacteria), F3 (inoculated with yeasts only). The parameters evaluated were: plate counting, quantification of key enzymes and analysis of volatile organic compounds associated with key sensory descriptors, using headspace gas chromatography-mass spectrometry (GC-MS). Furthermore, QS was estimated by the quantification of the expression of luxS genes by Reverse Transcriptase Real-Time PCR. The results demonstrated that microbial succession occurred in pilot scale fermentations, but no statistical differences for microbial enumeration and α-diversity index were observed among experiments and control. Moreover, it was not possible to make conclusive correlations of enzymatic profile and fermenting microbiota, likely due to the intrinsic activity of plant hydrolases. Regarding to the expression of luxS genes, in Lactiplantibacillus plantarum they were active along the fermentation, but for Limosilactobacillus fermentum, luxS was expressed only at early and middle phases. Correlation analysis of luxS expression and production of volatile metabolites evidenced a possible negative association of Lp. Plantarum with fermentation quality. In conclusion, these data corroborate former shotgun metagenomic analysis by demonstrating the expression of luxS by lactobacilli in pilot scale cocoa fermentation and evidence Lp. Plantarum is the main lactic acid bacteria related to its expression.


Assuntos
Cacau , Chocolate , Fermentação , Lactobacillus/genética , Lactobacillus/metabolismo , Cacau/microbiologia , Ácido Acético/metabolismo , Expressão Gênica
2.
Probiotics Antimicrob Proteins ; 16(1): 293-307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36696085

RESUMO

Probiotics are beneficial bacteria that may modulate the immune response by altering the maturation and function of antigen-presenting cells, such as dendritic cells. This study aimed to evaluate the antibacterial gene expression of dendritic cells challenged with LPS and probiotics. Immature dendritic cells were obtained from human CD14+ monocytes and challenged with E. coli LPS and probiotics Lacticaseibacillus rhamnosus (LR-32) and Lactobacillus acidophilus (LA-5) at a ratio DC:bacteria of 1:10. The analysis of gene expression was performed by RT-qPCR using the Kit RT2 human antibacterial response. In the supernatant, the cytokines secretion was determined by ELISA. Tukey post-ANOVA with p at 5% was used for statistical analysis. LPS showed the higher upregulation of 29 genes compared with the groups where probiotics were added to LPS, including genes related to an inflammatory response like BIRC3, CASP1, CCL5, CXCL1, IL12B, IL18, MYD88, NLRP3, RIPK1, and TIRAP. Similarly, LPS increased the transcription of genes enrolled with apoptosis such as CARD6, CASP1, IRF5, MAP2K1, MAP2K4, MAPK1, MYD88, NLRP3, RIPK2, TNF, TNFRSF1A, and XIAP when compared to probiotics groups (p < 0.05). Although probiotics decrease several genes upregulated by LPS, the transcription of encoded cytokines IL12A, IL12B, IL1B, IL6, CXCL8, and TNF genes was maintained upregulated by probiotics, except for IL18, which was downregulated by LA-5. LA-5 led to a higher transcription of IL1B, IL6, and CXCL-8 which was followed by the secretion of these proteins by ELISA. The results suggest that probiotics attenuate the transcription of inflammatory and immune response genes caused by LPS.


Assuntos
Lactobacillus , Probióticos , Humanos , Lactobacillus/genética , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-6/genética , Escherichia coli/genética , Interleucina-18/genética , Interleucina-18/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Células Dendríticas , Citocinas/metabolismo , Transcrição Gênica , Probióticos/metabolismo
3.
Arch Oral Biol ; 156: 105820, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866118

RESUMO

Lactobacillus spp. are acidogenic and aciduric bacteria and are among the main cariogenic microorganisms associated with the carious process. OBJECTIVE: This study aimed to identify genes involved in the acid-tolerance of Lactobacillus spp. and potential functions attributed to these genes within the metatranscriptome of sound root surfaces and carious root surfaces. DESIGN: Genomic libraries were built from mRNA isolated from the biofilm samples (10 from sound root and 9 from carious root using Illumina HiSeq 2500). Reads generated by RNA-seq were mapped against 162 oral microbial genomes and genes potentially related to acid tolerance were manually extracted from the Lactobacillus spp. genomes using L. paracasei ATCC 344 as reference genome. The R package DESeq2 was used to calculate the level of differential gene expression between those two clinical conditions. RESULTS: Fifteen Lactobacillus spp. genomes were identified and a total of 653 acid tolerance genes were overexpressed in carious root surfaces. Multiple functions, as translation, ribosomal structure and biogenesis, transport of nucleotides and amino acids, are involved in Lactobacillus spp. acid tolerance. Species-specific functions also seem to be related to the fitness of Lactobacillus spp. in acidified environments such as that of the cariogenic biofilm associated with carious root lesions. CONCLUSIONS: The response of Lactobacillus spp. to an acidic environment is complex and multifaceted. This finding suggests several possible avenues for further research into the adaptive mechanisms of these bacteria.


Assuntos
Cárie Dentária , Lactobacillus , Humanos , Lactobacillus/genética , Cárie Dentária/microbiologia , Bactérias , Streptococcus mutans/genética
4.
Braz J Microbiol ; 54(3): 2137-2152, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450104

RESUMO

The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.


Assuntos
Queijo , Probióticos , Humanos , Animais , Queijo/microbiologia , Lactobacillus/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Contenção de Riscos Biológicos , Técnicas In Vitro
5.
Can J Vet Res ; 87(2): 127-145, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37020571

RESUMO

Lactic acid bacteria (LAB) were isolated, identified, and characterized from pig feces at various growth stages and feed rations in order to be used as probiotic feed additives. Lactic acid bacteria numbers ranged from 7.10 ± 1.50 to 9.40 log CFUs/g for growing and lactating pigs, respectively. Isolates (n = 230) were identified by (GTG)5-polymerase chain reaction and partial sequence analysis of 16S rRNA. Major LAB populations were Limosilactobacillus reuteri (49.2%), Pediococcus pentosaceus (20%), Lactobacillus amylovorus (11.4%), and L. johnsonii (8.7%). In-vitro assays were performed, including surface characterization and tolerance to acid and bile salts. Several lactobacilli exhibited hydrophobic and aggregative characteristics and were able to withstand gastrointestinal tract conditions. In addition, lactobacilli showed starch- and phytate-degrading ability, as well as antagonistic activity against Gram-negative pathogens and the production of bacteriocin-like inhibitory substances. When resistance or susceptibility to antibiotics was evaluated, high phenotypic resistance to ampicillin, gentamicin, kanamycin, streptomycin, and tetracycline and susceptibility towards clindamycin and chloramphenicol was observed in the assayed LAB. Genotypic characterization showed that 5 out of 15 resistance genes were identified in lactobacilli; their presence did not correlate with phenotypic traits. Genes erm(B), strA, strB, and aadE conferring resistance to erythromycin and streptomycin were reported among all lactobacilli, whereas tet(M) gene was harbored by L. reuteri and L. amylovorus strains. Based on these results, 6 probiotic LAB strains (L. reuteri F207R/G9R/B66R, L. amylovorus G636T/S244T, and L. johnsonii S92R) can be selected to explore their potential as direct feed additives to promote swine health and replace antibiotics.


Des bactéries lactiques (LAB) ont été isolées, identifiées et caractérisées à partir de matières fécales de porc à différents stades de croissance et de rations alimentaires afin d'être utilisées comme additifs alimentaires probiotiques. Le nombre de bactéries lactiques variait de 7,10 ± 1,50 à 9,40 log UFC/g pour les porcs en croissance et en lactation, respectivement. Les isolats (n = 230) ont été identifiés par réaction d'amplification en chaîne par la (GTG)5-polymérase et analyse partielle de la séquence de l'ARNr 16S. Les principales populations de LAB étaient Limosilactobacillus reuteri (49,2 %), Pediococcus pentosaceus (20 %), Lactobacillus amylovorus (11,4 %) et L. johnsonii (8,7 %). Des tests in vitro ont été effectués, y compris la caractérisation de surface et la tolérance aux acides et aux sels biliaires. Plusieurs lactobacilles présentaient des caractéristiques hydrophobes et agrégatives et étaient capables de résister aux conditions du tractus gastro-intestinal. De plus, les lactobacilles ont montré une capacité de dégradation de l'amidon et des phytates, ainsi qu'une activité antagoniste contre les agents pathogènes à Gram négatif et la production de substances inhibitrices de type bactériocine. Lorsque la résistance ou la sensibilité aux antibiotiques a été évaluée, une résistance phénotypique élevée à l'ampicilline, à la gentamicine, à la kanamycine, à la streptomycine et à la tétracycline et une sensibilité à la clindamycine et au chloramphénicol ont été observées dans les LAB testés. La caractérisation génotypique a montré que cinq gènes de résistance sur 15 ont été identifiés dans les lactobacilles; leur présence n'était pas corrélée aux traits phénotypiques. Les gènes erm(B), strA, strB et aadE conférant une résistance à l'érythromycine et à la streptomycine ont été signalés parmi tous les lactobacilles, tandis que le gène tet(M) était hébergé par les souches L. reuteri et L. amylovorus. Sur la base de ces résultats, six souches probiotiques LAB (L. reuteri F207R/G9R/B66R, L. amylovorus G636T/S244T et L. johnsonii S92R) peuvent être sélectionnées pour explorer leur potentiel en tant qu'additifs alimentaires directs pour promouvoir la santé des porcs et remplacer les antibiotiques.(Traduit par Docteur Serge Messier).


Assuntos
Lactobacillales , Probióticos , Animais , Suínos , Feminino , Lactobacillales/genética , RNA Ribossômico 16S/genética , Lactação , Antibacterianos/farmacologia , Lactobacillus/genética , Fezes/microbiologia , Probióticos/farmacologia , Estreptomicina
6.
J Low Genit Tract Dis ; 27(3): 280-285, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37043391

RESUMO

OBJECTIVES: Diet habits, such as low milk and dairy intake, have been associated with bacterial vaginosis. Thus, the authors compared vaginal Lactobacillus crispatus abundances in women with different molecularly defined community state types (CSTs) according to the consumption of milk and/or dairy products. METHODS: A total of 516 women from the 5 geographic regions of Brazil were included. Participants were interviewed with a structured questionnaire for assessment of milk and/or dairy intake. Vaginal samples were used for sequencing of V3-V4 regions of the 16S ribosomal RNA gene for further determination of L. crispatus relative abundance (RA) and clustering into 1 of the 5 CSTs (CSTI-CSTV), as firstly described by Ravel et al. (2011). The nonparametric Mann-Whitney test was used to compare L. crispatus RA within the most representative CSTs ( L. crispatus -dominant CSTI, Lactobacillus iners -dominant CSTIII, and Lactobacillus -depleted CSTIV) in this population, according to the frequency of milk and/or dairy intake. RESULTS: The prevalence of CSTI was 33.3% ( n = 172), CSTIII was 39% ( n = 201), and CSTIV was 27.7% ( n = 143). Among the participants with CSTIII, higher L. crispatus RA was observed for those who reported milk/dairy intake (median = 0.02; interquartile range = 0.01-0.09) than those with no consumption (median = 0.01; interquartile range = 0-0.03) ( p = .03). Such difference was not observed for participants with CSTI and CSTIV. CONCLUSIONS: Women with vaginal microbiota dominated by L. iners who consume milk and/or dairy present increased abundances of L. crispatus . Therefore, they could benefit from L. crispatus protective properties conferring greater temporal microbiota stability and, consequently, increased protection against infections.


Assuntos
Lactobacillus crispatus , Microbiota , Vaginose Bacteriana , Feminino , Humanos , Animais , Lactobacillus crispatus/genética , Leite , Lactobacillus/genética , Vagina/microbiologia
7.
PeerJ ; 10: e14449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518275

RESUMO

Background: Intra-continentally, vaginal microbiome signatures are reported to be significantly different between Black and Caucasian women, with women of African ancestry having the less well defined heterogenous bacterial community state type (CST) deficient of Lactobacillus species (CST IV). The objective of this study was to characterize the vaginal microbiomes across a more diverse intercontinental group of women (N = 151) of different ethnicities (African American, African Kenyan, Afro-Caribbean, Asian Indonesian and Caucasian German) using 16S rRNA gene sequence analysis to determine their structures and offer a comprehensive description of the non-Lactobacillus dominant CSTs and subtypes. Results: In this study, the bacterial composition of the vaginal microbiomes differed significantly among the ethnic groups. Lactobacillus spp. (L. crispatus and L. iners) dominated the vaginal microbiomes in African American women (91.8%) compared to European (German, 42.4%), Asian (Indonesian, 45.0%), African (Kenyan, 34.4%) and Afro-Caribbean (26.1%) women. Expanding on CST classification, three subtypes of CST IV (CST IV-A, IV-B and IV-C) (N = 56, 37.1%) and four additional CSTs were described: CST VI Gardnerella vaginalis-dominant (N = 6, 21.8%); CST VII (Prevotella-dominant, N = 1, 0.66%); CST VIII (N = 9, 5.96%), resembling aerobic vaginitis, was differentiated by a high proportion of taxa such as Enterococcus, Streptococcus and Staphylococcus (relative abundance [RA] > 50%) and CST IX (N = 7, 4.64%) dominated by genera other than Lactobacillus, Gardnerella or Prevotella (e.g., Bifidobacterium breve and Anaerococcus vaginalis). Within the vaginal microbiomes, 32 "taxa with high pathogenic potential" (THPP) were identified. Collectively, THPP (mean RA ~5.24%) negatively correlated (rs = -0.68, p < 2.2e-16) with Lactobacillus species but not significantly with Gardnerella/Prevotella spp. combined (r = -0.13, p = 0.1). However, at the individual level, Mycoplasma hominis exhibited moderate positive correlations with Gardnerella (r = 0.46, p = 2.6e-09) and Prevotella spp. (r = 0.47, p = 1.4e-09). Conclusions: These findings while supporting the idea that vaginal microbiomes vary with ethnicity, also suggest that CSTs are more wide-ranging and not exclusive to any particular ethnic group. This study offers additional insight into the structure of the vaginal microbiome and contributes to the description and subcategorization of non-Lactobacillus-dominated CSTs.


Assuntos
Microbiota , Vagina , Feminino , Humanos , Masculino , RNA Ribossômico 16S/genética , Quênia , Vagina/microbiologia , Microbiota/genética , Lactobacillus/genética , Bactérias/genética , Gardnerella/genética
8.
Braz J Microbiol ; 53(3): 1577-1591, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35781865

RESUMO

This study compares the probiotic Lactobacillus strains isolated from dairy and Iranian traditional food products with those from human sources on intestinal microbiota using BALB/C mice model. First, Lactiplantibacillus plantarum (M11), Limosilactobacillus fermentum (19SH), Lactobacillus acidophilus (AC2), and Lactobacillus gasseri (52b) strains, isolated from either Iranian traditionally fermented products or human (healthy woman vaginal secretions), identified with molecular methods and selected based on the surface hydrophobicity, auto- and co-aggregation, were investigated for their probiotic properties and compared with their standard probiotic strains in vitro. The native strains and their mixtures (MIX) were then orally fed to five groups of female inbred BALB/C mice over the course of 38 days by gavage at 0.5 and 4 McFarland, respectively, equal to 1.5 × 108 and 1 × 109 cfu/ml. Feeding paused for 6 days to test the bacteria's adhesion in vivo. According to the findings, the probiotic Lactobacillus strain isolated from human source (52b) exhibited the best in vitro and in vivo adhesion ability. Probiotic Lactobacillus strains isolated from Iranian traditional food products (19SH and AC2) had the most co-aggregation with Listeria monocytogenes (ATTC 7644), Salmonella enterica subsp. enterica (ATCC 13,076), and Escherichia coli (NCTC 12,900 O157:H7) in vitro. These strains produced the most profound decreasing effect on the mice intestinal microbiota and pathogens in vivo. The difference in the strains and their probiotic potential is related to the sources from which they are isolated as well as their cell walls. The results suggest that (19SH and 52b strains) are the best candidates to investigate the cell wall and its effect on the host immune system.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Escherichia coli , Feminino , Humanos , Irã (Geográfico) , Lactobacillus/genética , Camundongos , Camundongos Endogâmicos BALB C
9.
J Appl Microbiol ; 133(3): 1610-1619, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35699653

RESUMO

AIMS: In this study, we sought to identify and characterize a collection of 101 lactobacilli strains isolated from natural whey starters used in Uruguayan artisan cheese production, based on their capacity to produce gamma-aminobutyric acid (GABA) and their probiotic potential. METHODS AND RESULTS: The probiotic potential was assessed using low pH and bile salt resistance assays; bacterial adhesion to intestinal mucus was also evaluated. Selected strains were then identified by 16S sequencing, and their GABA-producing potential was confirmed and quantified using a UHPLC-MS system. Twenty-five strains were identified and characterized as GABA-producing lactobacilli belonging to the phylogenetical groups Lactiplantibacillus (n = 19) and Lacticaseibacillus (n = 6). Fifteen strains of the Lactiplantibacillus group showed a significantly higher GABA production than the rest. They showed the predicted ability to survive the passage through the gastrointestinal tract, according to the in vitro assays. CONCLUSIONS: A set of promising candidate strains was identified as potential probiotics with action on the gut-brain axis. Further studies are needed to assess their possible effects on behaviour using in vivo assay. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the potential of strains isolated from local natural whey starters as probiotics and for biotechnological use in functional GABA-enriched foods formulation.


Assuntos
Queijo , Probióticos , Aderência Bacteriana , Queijo/microbiologia , Lactobacillus/genética , Ácido gama-Aminobutírico
10.
Curr Microbiol ; 79(8): 230, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767085

RESUMO

In healthy women at reproductive age, the vaginal microbiota is mainly dominated by Lactobacillus bacteria during pregnancy and non-pregnancy stages. However, little is known about longitudinal changes within the vaginal microbiota composition from the third trimester of pregnancy to childbirth in healthy women. Thus, we conducted an exploratory longitudinal study of vaginal microbiota composition of 10 Mexican pregnant women, sampling from the same volunteer at two-time points: third trimester of pregnancy and active childbirth. Vaginal bacterial microbiota was characterized by V3-16S rDNA libraries by high-throughput sequencing and bioinformatics methods. Out of ten, vaginal microbiota from eight women was dominated by the Lactobacillus genus at both time points, whereas the other two women showed vaginal microbiota composition with high abundance of genera Gardnerella, Prevotella, and members of the Atopobiaceae family, without any preterm birth correlation. Importantly, we found no statistically significant differences in relative abundances, absolute reads count, alpha and beta diversity between the third trimester of pregnancy, and active childbirth time points. However, compared to the third trimester of pregnancy, we observed a trend with higher absolute reads counts for Gardnerella, Faecalibaculum, Ileibacterium, and Lactococcus genus at active childbirth and lower absolute reads count of Lactobacillus genus. Our results suggest that the vaginal microbiota composition is stable, and Lactobacillus genus is the dominant taxa in Mexican women's vagina at the third trimester of pregnancy and childbirth.


Assuntos
Microbiota , Nascimento Prematuro , Bactérias/genética , Feminino , Humanos , Recém-Nascido , Lactobacillus/genética , Estudos Longitudinais , Microbiota/genética , Gravidez , Terceiro Trimestre da Gravidez , Nascimento Prematuro/microbiologia , RNA Ribossômico 16S/genética , Vagina/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA