Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Clin Transl Oncol ; 25(2): 375-383, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36100735

RESUMO

PURPOSE: Both cyclic pentapeptide c(RGDfK) and acridine orange (AO) exhibit antitumor effects and cell permeability. This study aimed to evaluate the nuclear targeting efficiency and safety of the nuclear targeting probe for bladder cancer (BCa) synthesized by c(RGDfK) and AO. METHODS: The nuclear targeting probe AO-(cRGDfK)2 was synthesized from AO hydrochloride, azided c(RGDfK), and a near-infrared skeleton synthesized via click chemistry reactions. The effect of the AO-(cRGDfK)2 probe on cell viability was assessed in BCa 5637 cells. The tumor cell targeting efficacy of the AO-(cRGDfK)2 probe was evaluated in BCa cells in vitro and in tumor-bearing mice in vivo. Nuclear-specific accumulation of fluorescence probe in BCa tumor cells was evaluated using laser scanning confocal microscopy (LSCM). Hematoxylin and eosin staining was performed to detect histopathological changes in the spleen, heart, liver, and kidney. RESULTS: The AO-(cRGDfK)2 probe did not cause a significant reduction in cell viability. LSCM analysis showed that AO-(cRGDfK)2 exhibited nuclear-specific ambulation in BCa cells and was not accumulated in 293T cells. Also, this probe efficiently targeted tumor cells in the serum and urine samples. In vivo imaging system of tumor-bearing mice showed that ~ 80% percent of fluorescence signal was accumulated in the tumor sites. The probe did not change histopathology in the heart, liver, spleen, and kidney in tumor-bearing mice after the 21-day treatment. CONCLUSIONS: The AO-(cRGDfK)2 probe exhibited nuclear-specific accumulation in BCa cells without cytotoxicity, which provides an innovative alternative to improve anticancer therapy for BCa.


Assuntos
Laranja de Acridina , Neoplasias da Bexiga Urinária , Animais , Camundongos , Corantes Fluorescentes , Neoplasias da Bexiga Urinária/tratamento farmacológico , Amarelo de Eosina-(YS) , Rim , Linhagem Celular Tumoral
2.
Ultrastruct Pathol ; 46(6): 511-518, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36335591

RESUMO

Açaí (Euterpe oleracea Mart) is an Amazon plant with many biological properties. Previous report of this group evidenced autophagy induction after treatment with açaí seed extract in MCF-7 breast cancer cell lines by acridine orange assay. The aim of this study was to evaluate the ultrastructural changes induced by açaí seed extract in MCF-7 breast cancer cell lines. First, MCF- 7 breast cancer cell line viability was evaluated by MTT assay. Acridine orange assay showed increase in the acidic compartments, suggesting autophagolysosome formation. These cells were treated with 25 µg/ml for 24 h and evaluated by transmission electron microscopy (MET). This analysis showed that açaí seed extract induced autophagy, confirmed by autophagolysosome formation. Furthermore, açaí seed extract increased the number of mitochondria, suggesting the enrollment of reactive oxygen species in autophagy.


Assuntos
Neoplasias da Mama , Euterpe , Humanos , Feminino , Euterpe/química , Células MCF-7 , Laranja de Acridina , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia
3.
Molecules ; 27(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296679

RESUMO

A glioblastoma (GBM) is a highly malignant primary brain tumor with a poor prognosis because of its invasiveness and high resistance to current therapies. In GBMs, abnormal glycosylation patterns are associated with malignancy, which allows for the use of lectins as tools for recognition and therapy. More specifically, lectins can interact with glycan structures found on the malignant cell surface. In this context, the present work aimed to investigate the antiglioma potential of ConGF, a lectin purified from Canavalia grandiflora seeds, against C6 cells. The treatment of C6 cells with ConGF impaired the mitochondrial transmembrane potential, reduced cell viability, and induced morphological changes. ConGF also induced massive autophagy, as evaluated by acridine orange (AO) staining and LC3AB-II expression, but without prominent propidium iodide (PI) labeling. The mechanism of action appears to involve the carbohydrate-binding capacity of ConGF, and in silico studies suggested that the lectin can interact with the glycan structures of matrix metalloproteinase 1 (MMP1), a prominent protein found in malignant cells, likely explaining the observed effects.


Assuntos
Canavalia , Fabaceae , Canavalia/química , Fabaceae/química , Lectinas/química , Metaloproteinase 1 da Matriz , Propídio , Laranja de Acridina , Lectinas de Plantas/química , Sementes/química , Carboidratos/análise
4.
Phytomedicine ; 106: 154424, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126544

RESUMO

BACKGROUND: Dengue virus (DENV) is considered one of the most important pathogens in the world causing 390 million infections each year. Currently, the development of vaccines against DENV presents some shortcomings and there is no antiviral therapy available for its infection. An important challenge is that both treatments and vaccines must be effective against all four DENV serotypes. Nordihydroguaiaretic acid (NDGA), isolated from Larrea divaricata Cav. (Zygophyllaceae) has shown a significant inhibitory effect on a broad spectrum of viruses, including DENV serotypes 2 and 4. PURPOSE: We evaluated the in vitro virucidal and antiviral activity of NDGA on DENV serotype 1 (DENV1), including the study of its mechanism of action, to provide more evidence on its antiviral activity. METHODS: The viability of viral particles was quantified by the plaque-forming unit reduction method. NDGA effects on DENV1 genome and viral proteins were evaluated by qPCR and immunofluorescence, respectively. Lysosomotropic activity was assayed using acridine orange and neutral red dyes. RESULTS: NDGA showed in vitro virucidal and antiviral activity against DENV1. The antiviral effect would be effective within the first 2 h after viral internalization, when the uncoating process takes place. In addition, we determined by qPCR that NDGA decreases the amount of intracellular RNA of DENV1 and, by immunofluorescence, the number of cells infected. These results indicate that the antiviral effect of NDGA would have an intracellular mechanism of action, which is consistent with its ability to be incorporated into host cells. Considering the inhibitory activity of NDGA on the cellular lipid metabolism, we compared the antiviral effect of two inhibitors acting on two different pathways of this type of metabolism: 1) resveratrol that inhibits the sterol regulatory element of binding proteins, and 2) caffeic acid that inhibits the 5-lipoxygenase (5-LOX) enzyme. Only caffeic acid produced an inhibitory effect on DENV1 infection. We studied the lysosomotropic activity of NDGA on host cells and found, for the first time, that this compound inhibited the acidification of cell vesicles which would prevent DENV1 uncoating process. CONCLUSION: The present work contributes to the knowledge of NDGA activity on DENV. We describe its activity on DENV1, a serotype different to those that have been already reported. Moreover, we provide evidence on which stage/s of the viral replication cycle NDGA exerts its effects. We suggest that the mechanism of action of NDGA on DENV1 is related to its lysosomotropic effect, which inhibits the viral uncoating process.


Assuntos
Vírus da Dengue , Laranja de Acridina/farmacologia , Antivirais/farmacologia , Araquidonato 5-Lipoxigenase/genética , Ácidos Cafeicos , Corantes/farmacologia , Vírus da Dengue/fisiologia , Masoprocol/farmacologia , Vermelho Neutro/farmacologia , RNA , Resveratrol/farmacologia , Sorogrupo , Esteróis/farmacologia , Proteínas Virais , Replicação Viral
5.
Colloids Surf B Biointerfaces ; 171: 285-290, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30048903

RESUMO

The increasing and indiscriminate use of pesticides may lead to the intoxication and contamination of the environment and foods. In addition, pesticides can cause fungal resistance promoting the selection of resistant phytopathogenic fungi. This is a problem in the agricultural and human health areas, which leads to a need for developing new methodologies to address this problem. Photodynamic inactivation is a promising strategy involving the association of a photosensitizer (PS), light, and molecular oxygen to inhibit the growth of microorganisms. In this work, the PS acridine orange (AO) was deposited using the spray layer-by-layer technique. The effectiveness of the method was evaluated by the analysis of the growth evolution of the colonies as a function of the amount of PS layers applied in field in the presence of sunlight. Image processing and analysis of the fractal theory were used to evaluate the growth of the colonies. The results revealed that AO is a candidate PS for use in field. It was possible to observe the reduction of the growth dynamics of the colonies with the increase of the number of PS layers. The parameters related to the fractality of the system were described by mathematical models of the fractal growth of interfaces. The knowledge of these parameters can help to identify new strategies for the control of phytopathogenic microorganisms that directly affect agricultural production.


Assuntos
Laranja de Acridina/farmacologia , Antifúngicos/farmacologia , Fractais , Fungos/efeitos dos fármacos , Modelos Biológicos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Laranja de Acridina/química , Antifúngicos/química , Fungos/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/química , Luz Solar
6.
J Photochem Photobiol B ; 173: 514-521, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28683399

RESUMO

Candida albicans is responsible for many of the infections affecting immunocompromised individuals. Although most C. albicans are susceptible to antifungal drugs, uncontrolled use of these drugs has promoted the development of resistance to current antifungals. The clinical implication of resistant strains has led to the search for safer and more effective drugs as well as alternative approaches, such as controlled drug release using liposomes and photodynamic inactivation (PDI), to eliminate pathogens by combining light and photosensitizers. In this study, we used layer-by-layer (LBL) assembly to immobilize triclosan and acridine orange encapsulated in liposomes and investigated the possibility of controlled release using light. Experiments were carried out to examine the susceptibility of C. albicans to PDI. The effects of laser irradiation were investigated by fluorescence microscopy, atomic force microscopy, and release kinetics. Liposomes were successfully prepared and immobilized using the self-assembly LBL technique. Triclosan was released more quickly when the LBL film was irradiated. The release rate was approximately 40% higher in irradiated films (fluence of 15J/cm2) than in non-irradiated films. The results of the susceptibility experiments and surface morphological analysis indicated that C. albicans cell death is caused by photodynamic inactivation. Liposomes containing triclosan and acridine orange may be useful for inactivating C. albicans using light. Our results lay the foundation for the development of new clinical strategies to control resistant strains.


Assuntos
Laranja de Acridina/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Lipossomos/química , Fármacos Fotossensibilizantes/química , Triclosan/química , Laranja de Acridina/metabolismo , Laranja de Acridina/farmacologia , Antifúngicos/química , Candida albicans/efeitos da radiação , Liberação Controlada de Fármacos/efeitos da radiação , Lasers , Lipossomos/metabolismo , Microscopia de Força Atômica , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Triclosan/metabolismo , Triclosan/farmacologia
7.
Biochim Biophys Acta Gen Subj ; 1861(4): 900-909, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28130157

RESUMO

BACKGROUND: The study of acridine orange (AO) spectral characteristics and the quenching of its singlet and triplet excited states by TEMPO radical at its binding to DNA in the function of the DNA concentration and in the absence and presence of NaCl is reported. METHODS: The study was performed using steady-state and time resolved optical absorption and florescence, fluorescence correlation spectroscopy and resonant light scattering techniques. RESULTS: The presence of different species in equilibrium: AO monomers and aggregates bound to DNA, has been demonstrated, their relative content depending on the DNA and the AO concentrations. At high DNA concentration the AO monomers are protected against the contact with other molecules, thus reducing the AO excited state quenching. The addition of NaCl reduces the AO binding constant to DNA, thus reducing the AO and DNA aggregation. CONCLUSIONS: The interaction of AO with DNA is a complex process, including aggregation and disaggregation of both components. This modifies the AO excited state characteristics and AO accessibility to other molecules. The salt reduces the DNA effects on the AO excited state characteristics thus attenuating its effects on the AO efficacy in applications. GENERAL SIGNIFICANCE: This study demonstrates that the interaction of photosensitizers with DNA, depending on their relative concentrations, can both decrease and increase the photosensitizer efficacy in applications. The salt is able to attenuate these effects.


Assuntos
Laranja de Acridina/química , DNA/química , Concentração Osmolar , Cloreto de Sódio/química , Espectrometria de Fluorescência/métodos
8.
J Cell Sci ; 129(24): 4622-4632, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27875278

RESUMO

Acridine Orange is a cell-permeable green fluorophore that can be protonated and trapped in acidic vesicular organelles (AVOs). Its metachromatic shift to red fluorescence is concentration-dependent and, therefore, Acridine Orange fluoresces red in AVOs, such as autolysosomes. This makes Acridine Orange staining a quick, accessible and reliable method to assess the volume of AVOs, which increases upon autophagy induction. Here, we describe a ratiometric analysis of autophagy using Acridine Orange, considering the red-to-green fluorescence intensity ratio (R/GFIR) to quantify flow cytometry and fluorescence microscopy data of Acridine-Orange-stained cells. This method measured with accuracy the increase in autophagy induced by starvation or rapamycin, and the reduction in autophagy produced by bafilomycin A1 or the knockdown of Beclin1 or ATG7. Results obtained with Acridine Orange, considering R/GFIR, correlated with the conversion of the unlipidated form of LC3 (LC3-I) into the lipidated form (LC3-II), SQSTM1 degradation and GFP-LC3 puncta formation, thus validating this assay to be used as an initial and quantitative method for evaluating the late step of autophagy in individual cells, complementing other methods.


Assuntos
Ácidos/metabolismo , Laranja de Acridina/metabolismo , Autofagia , Técnicas Citológicas/métodos , Organelas/metabolismo , Animais , Tamanho Celular , Citometria de Fluxo , Fluorescência , Células HEK293 , Humanos , Microscopia Confocal , Ratos Wistar , Espectrometria de Fluorescência
9.
Photodiagnosis Photodyn Ther ; 15: 197-201, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27353716

RESUMO

BACKGROUND: A novel approach for photodynamic inactivation of Candida albicans is proposed. This method consists of realizing inactivation using ultraviolet light (254nm) combined with spraying layer-by-layer films of acridine orange. METHODS: To evaluate the effectiveness of the approach, the C. albicans were immobilized on quartz slices and covered with the spray layer-by-layer films. The fungi were analyzed using experiments to determine cell viability, as well as by fluorescence and atomic force microscopy. RESULTS: Viability analysis of C. albicans after photodynamic inactivation assisted by the films indicates cell death. The extent of cell death increases as the number of film layers increases. Fluorescence and atomic force microscopy analyses corroborated the cell death of C. albicans, which is posited to be due to damages to the fungi cell wall. CONCLUSIONS: Our approach has the potential to be used as an alternative for photodynamic inactivation of C. albicans. In addition, this method could be used in clinical procedures, such as for the decontamination of medical devices.


Assuntos
Laranja de Acridina/administração & dosagem , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Fotoquimioterapia/métodos , Impressão Tridimensional , Laranja de Acridina/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Composição de Medicamentos/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Raios Ultravioleta
10.
Peptides ; 78: 11-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26806200

RESUMO

We show here that crotamine, a polypeptide from the South American rattlesnake venom with cell penetrating and selective anti-fungal and anti-tumoral properties, presents a potent anti-plasmodial activity in culture. Crotamine inhibits the development of the Plasmodium falciparum parasites in a dose-dependent manner [IC50 value of 1.87 µM], and confocal microscopy analysis showed a selective internalization of fluorescent-labeled crotamine into P. falciparum infected erythrocytes, with no detectable fluorescence in uninfected healthy erythrocytes. In addition, similarly to the crotamine cytotoxic effects, the mechanism underlying the anti-plasmodial activity may involve the disruption of parasite acidic compartments H(+) homeostasis. In fact, crotamine promoted a reduction of parasites organelle fluorescence loaded with the lysosomotropic fluorochrome acridine orange, in the same way as previously observed mammalian tumoral cells. Taken together, we show for the first time crotamine not only compromised the metabolism of the P. falciparum, but this toxin also inhibited the parasite growth. Therefore, we suggest this snake polypeptide as a promising lead molecule for the development of potential new molecules, namely peptidomimetics, with selectivity for infected erythrocytes and ability to inhibit the malaria infection by its natural affinity for acid vesicles.


Assuntos
Antimaláricos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Venenos de Crotalídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Venenos de Serpentes/química , Laranja de Acridina/metabolismo , Sequência de Aminoácidos , Animais , Antimaláricos/isolamento & purificação , Transporte Biológico , Carbocianinas/química , Peptídeos Penetradores de Células/isolamento & purificação , Células Cultivadas , Cloroquina/farmacologia , Venenos de Crotalídeos/isolamento & purificação , Crotalus/metabolismo , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Concentração Inibidora 50 , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Coloração e Rotulagem , Vacúolos/efeitos dos fármacos , Vacúolos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA