Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(6): 1799-1811, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38277653

RESUMO

The aphid-transmitted polerovirus, cotton leafroll dwarf virus (CLRDV), first characterized from symptomatic cotton plants in South America, has been identified in commercial cotton plantings in the United States. Here, the CLRDV intraspecific diversity was investigated by comparative sequence analysis of the most divergent CLRDV coding region, ORF0/P0. Bayesian analysis of ORF0 sequences for U.S. and reference populations resolved three well-supported sister clades comprising one U.S. and two South American lineages. Principal component analysis (PCA) identified seven statistically supported intraspecific populations. The Bayesian phylogeny and PCA dendrogram-inferred relationships were congruent. Population analysis of ORF0 sequences indicated most lineages have evolved under negative selection, albeit certain sites/isolates evolved under positive selection. Both U.S. and South American isolates exhibited extensive ORF0 diversity. At least two U.S. invasion foci were associated with their founder populations in Alabama-Georgia and eastern Texas. The Alabama-Georgia founder is implicated as the source of recent widespread expansion and establishment of secondary disease foci throughout the southeastern-central United States. Based on the geographically restricted distribution, spread of another extant Texas population appeared impeded by a population bottleneck. Extant CLRDV isolates represent several putative introductions potentially associated with catastrophic weather events dispersing viruliferous cotton aphids of unknown origin(s).


Assuntos
Variação Genética , Gossypium , Luteoviridae , Filogenia , Doenças das Plantas , Gossypium/virologia , Estados Unidos , Doenças das Plantas/virologia , Luteoviridae/genética , Luteoviridae/isolamento & purificação , Luteoviridae/classificação , América do Sul , Teorema de Bayes , Afídeos/virologia , Fases de Leitura Aberta/genética , Animais , Análise de Sequência de DNA
2.
Viruses ; 15(7)2023 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-37515247

RESUMO

This is the first viral metagenomic analysis of grapevine conducted in Mexico. During the summer of 2021, 48 plants displaying virus-like symptoms were sampled in Queretaro, an important grapevine-producing area of Mexico, and analyzed for the presence of viruses via high-throughput sequencing (HTS). The results of HTS were verified by real-time RT-PCR following a standardized testing scheme (Protocol 2010). Fourteen different viruses were identified, including grapevine asteroid mosaic-associated virus (GAMaV), grapevine Cabernet Sauvignon reovirus (GCSV), grapevine fanleaf virus (GFLV), grapevine fleck virus (GFkV), grapevine Pinot gris virus (GPGV), grapevine red globe virus (GRGV), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine rupestris vein feathering virus (GRVFV), grapevine Syrah virus 1 (GSyV-1), grapevine virus B (GVB), and grapevine leafroll-associated viruses 1, 2, 3, 4 (GLRaV1, 2, 3, 4). Additionally, divergent variants of GLRaV4 and GFkV, and a novel Enamovirus-like virus were discovered. This is the first report of GAMaV, GCSV, GLRaV4, GPGV, GRGV, GRVFV, and GSyV-1 infecting grapevines in Mexico; the impact of these pathogens on production is unknown.


Assuntos
Luteoviridae , Vitis , México , Incidência , Doenças das Plantas , Sequenciamento de Nucleotídeos em Larga Escala
3.
J Econ Entomol ; 116(3): 719-725, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37171119

RESUMO

Cotton leafroll dwarf virus (CLRDV) is a yield-limiting, aphid-transmitted virus that was identified in cotton, Gossypium hirsutum L., in the United States of America in 2017. CLRDV is currently classified in the genus Polerovirus, family Solemoviridae. Although 8 species of aphids (Hemiptera: Aphididae) are reported to infest cotton, Aphis gossypii Glover is the only known vector of CLRDV to this crop. Aphis gossypii transmits CLRDV in a persistent and nonpropagative manner, but acquisition and retention times have only been partially characterized in Brazil. The main objectives of this study were to characterize the acquisition access period, the inoculation access period, and retention times for a U.S. strain of CLRDV and A. gossypii population. A sub-objective was to test the vector competence of Myzus persicae Sulzer and Aphis craccivora Koch. In our study, A. gossypii apterous and alate morphs were able to acquire CLRDV in 30 min and 24 h, inoculate CLRDV in 45 and 15 min, and retain CLRDV for 15 and 23 days, respectively. Neither M. persicae nor A. craccivora acquired or transmitted CLRDV to cotton.


Assuntos
Afídeos , Luteoviridae , Animais , Estados Unidos , Gossypium , Brasil
4.
Viruses ; 15(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36851624

RESUMO

High-throughput sequencing (HTS) has been an important tool for the discovery of plant viruses and their surveillance. In 2015, several virus-like symptoms were observed in passion fruit (PF) plants in Bahia state, Brazil. Using HTS technology, bioinformatics tools, RT-PCR, and Sanger sequencing, we identified the cucurbit aphid-borne yellows virus (CABYV, Polerovirus, Solemoviridae) in co-infection with cowpea aphid-borne mosaic virus (CABMV, Potyvirus, Potyviridae) in PF, in green manure, and spontaneous plants in several localities in Bahia. Complete genomes of CABYV-PF isolates were determined and analyzed with other CABYV isolates available in GenBank that have been identified in various countries. Phylogenetic analysis and pairwise identity comparison with CABYV isolates showed that CABYV-PFs are more closely related to French and Spanish isolates. Overall, analyses of all the CABYV genomes revealed that these could represent ten distinct species, and we thus proposed reclassifying these CABYV as isolates into ten species, tentatively named "Polerovirus curcubitaeprimum" to "Polerovirus curcubitaenonum", and "Polerovirus melo". CABYV-PF is a member of "Polerovirus curcubitaeprimum".


Assuntos
Luteoviridae , Passiflora , Brasil , Frutas , Filogenia , Luteoviridae/genética
5.
Virus Genes ; 59(1): 163-166, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36306006

RESUMO

In Brazil, the main viral disease of melon plant is severe yellowing disease called "Amarelão do Meloeiro," and a polerovirus, cucurbit aphid-borne yellows virus (CABYV) was considered one of the etiological agents. This virus is a recombinant strain originated from CABYV and unknown polerovirus. Due to unsuccessful mechanical inoculations of CABYV to host plants, the study of its biological characterization is hampered. Therefore, an infectious clone of the recombinant strain of CABYV was constructed using the Gibson Assembly technology. The full-length cDNA clones produced in this study showed to be infectious in three cucurbit species; melon (Cucumis melo), squash (a hybrid of Cucurbita maxima × C. moschata), and West Indian gherkin (Cucumis anguria) plants, but not in watermelon, cucumber, and zucchini plants. This insusceptibility of watermelon plants to the infectious clone corroborates the observation that this virus was never found in watermelon plants often located next to the infected melon plants. This infectious clone provides important tools for future study in developing resistant melon variety to CABYV infection.


Assuntos
Cucurbita , Cucurbitaceae , Luteoviridae , DNA Complementar/genética , Brasil , Luteoviridae/genética , Cucurbitaceae/genética , Cucurbita/genética , Plantas
6.
Sci Rep ; 11(1): 15730, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344928

RESUMO

Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.


Assuntos
Resistência à Doença/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Luteoviridae/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Genótipo , Filogenia , Melhoramento Vegetal , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Saccharum/crescimento & desenvolvimento , Saccharum/virologia
7.
Plant Dis ; 105(4): 896-903, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33044140

RESUMO

Maize yellow mosaic virus (MaYMV) hosted in various gramineous plants was assigned to the genus Polerovirus (family Luteoviridae) in 2018. However, little is known about its genetic diversity and population structure. In this study, 509 sugarcane leaf samples with mosaic symptoms were collected in 2017 to 2019 from eight sugarcane-growing provinces in China. Reverse-transcription PCR results revealed that four positive-sense RNA viruses were found to infect sugarcane, and the incidence of MaYMV among samples from Fujian, Sichuan, and Guangxi Provinces was 52.1, 9.8, and 2.5%, respectively. Based on 82 partial MaYMV sequences and 46 whole-genome sequences from different host plants, phylogenetic analysis revealed that MaYMV populations are very closely associated with their source geographical regions (China, Africa, and South America). Pairwise identity analysis showed significant variability in genome sequences among MaYMV isolates with genomic nucleotide identities of 91.1 to 99.9%. In addition to codon mutations, insertions or deletions also contributed to genetic variability in individual coding regions, especially in the readthrough protein (P3-P5 fusion protein). Low gene flow and significant genetic differentiation of MaYMV were observed among the three geographical populations, suggesting that environmental adaptation is an important evolutionary force that shapes the genetic structure of MaYMV. Genes in the MaYMV genome were subject to strong negative or purification selection during evolution, except for the movement protein (MP), which was under positive selection pressure. This finding suggests that the MP may play an important role in MaYMV evolution. Taken together, our findings provide basic information for the development of an integrated disease management strategy against MaYMV.


Assuntos
Luteoviridae , Vírus do Mosaico , China , Evolução Molecular , Genoma Viral/genética , Luteoviridae/genética , Vírus do Mosaico/genética , Filogenia , Doenças das Plantas , América do Sul , Zea mays
8.
Virus Genes ; 56(5): 662-667, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32691201

RESUMO

Alfalfa (Medicago sativa L.) growing areas of Argentina were surveyed between 2010 and 2018 to determine the geographical distribution and analyse the genetic diversity among alfalfa enamovirus-1 (AEV-1) isolates. The virus was detected in all 17 surveyed alfalfa-producing provinces, with a prevalence of 64%. The plant virus AEV-1 is widely distributed in the country, and its transmission vector has been unknown until now. Here we show that the black aphid Aphis craccivora can transmit AEV-1. The CP sequence identity among 16 AEV-1 isolates from Argentina was from 98 to 100% and from 98.9 to 100% at nucleotide and amino acid levels, respectively, indicating a low level of sequence variation among these isolates. The phylogenetic analysis based on the complete nucleotide sequence of the CP gene indicated that AEV-1 isolates are closely related and clustered in a monophyletic group. These results suggest that AEV-1 has spread very recently in Argentina. In the present study, we report the geographical distribution of AEV-1 in the main alfalfa-growing areas of Argentina and, for the first time, identify an insect vector and describe the CP gene diversity of an enamovirus worldwide.


Assuntos
Luteoviridae/genética , Medicago sativa/virologia , Doenças das Plantas/virologia , Animais , Afídeos/virologia , Argentina , Variação Genética , Genoma Viral/genética , Insetos Vetores/virologia , Filogenia , Filogeografia
9.
Plant Dis ; 104(6): 1589-1592, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32320337

RESUMO

A maize-infecting polerovirus variously named maize yellow dwarf virus RMV2 (MYDV-RMV2) and maize yellow mosaic virus (MaYMV) has been discovered and previously described in East Africa, Asia, and South America. It was identified in virus surveys in these locations instigated by outbreaks of maize lethal necrosis (MLN), known to be caused by coinfections of unrelated maize chlorotic mottle virus (MCMV) and any of several maize-infecting potyviruses, and was often found in coinfections with MLN viruses. Although sequenced in many locations globally and named for symptoms of related or coinfecting viruses, and with an infectious clone reported that experimentally infects Nicotiana benthamiana, rudimentary biological characterization of MaYMV in maize, including insect vector(s) and symptoms in single infections, has not been reported until now. We report isolation from other viruses and leaf tip reddening symptoms in several maize genotypes, along with transmission by two aphids, Rhopalosiphum padi and Rhopalosiphum maidis. This is important information distinguishing this virus and demonstrating that in single infections it causes symptoms distinct from those of potyviruses or MCMV in maize, and identification of vectors provides an important framework for determination of potential disease impact and management.


Assuntos
Afídeos , Luteoviridae , África Oriental , Animais , Avena , Genótipo , América do Sul , Zea mays
10.
Plant Dis ; 104(3): 780-786, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31958248

RESUMO

Virus-like disease symptoms consisting of leaf cupping, shortened internodes, and overall stunting were observed in commercial cotton fields in Alabama in 2017 to 2018. To determine the complete genome sequence of the suspected causal polerovirus, symptomatic leaf samples were collected in Macon County, Alabama, and subjected to Illumina RNA sequencing. Based on BLASTn analysis, the Illumina contig of 5,771 nt shared the highest nucleotide identity (approximately 95%) with members of the species Cotton leafroll dwarf virus (CLRDV) (genus Polerovirus; family Luteoviridae) from Argentina and Brazil. The full-length viral genome sequence was verified by reverse transcription (RT)-PCR amplification, cloning, and Sanger sequencing. The complete CLRDV genome of 5,865 nt in length shared 94.8 to 95.2% nucleotide identity with six previously reported CLRDV isolates. The genome of the CLRDV isolate amplified from Alabama samples (CLRDV-AL) has seven predicted open reading frames (ORFs). Viral proteins 1 to 5 (P1 to P5) shared 91.9 to 99.5% amino acid identity with the six CLRDV isolates from Argentina and Brazil. However, P0, the suppressor of host gene silencing, shared 82.4 to 88.5% pairwise amino acid identity with the latter CLRDV isolates. Phylogenetic analysis of the seven full-length CLRDV genomes resolved three sister clades: CLRDV-AL, CLRDV-typical, and CLRDV-atypical, respectively. Three recombination events were detected by the recombination detection program among the seven CLRDV isolates with breakpoints occurring along the genome. Pairwise nucleotide identity comparisons of ORF0 sequences for the three CLRDV-AL field isolates indicated that they were >99% identical, suggesting that this previously unknown CLRDV genotype represents a single introduction to Alabama.


Assuntos
Luteoviridae , Proteína P0 da Mielina , Brasil , Genótipo , Filogenia , Doenças das Plantas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA