Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 369: 66-75, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113928

RESUMO

Malaria, parasitic disease considered a major health public problem, is caused by Plasmodium protozoan genus and transmitted by the bite of infected female Anopheles mosquito genus. Cerebral malaria (CM) is the most severe presentation of malaria, caused by P. falciparum and responsible for high mortality and enduring development of cognitive deficits which may persist even after cure and cessation of therapy. In the present study we evaluated selected behavioral, neurochemical and neuropathologic parameters after rescue from experimental cerebral malaria caused by P. berghei ANKA in C57BL/6 mice. Behavioral tests showed impaired nest building activity as well as increased marble burying, indicating that natural behavior of mice remains altered even after cure of infection. Regarding the neurochemical data, we found decreased α2/α3 Na+,K+-ATPase activity and increased immunoreactivity of phosphorylated Na+,K+-ATPase at Ser943 in cerebral cortex after CM. In addition, [3H]-Flunitrazepam binding assays revealed a decrease of benzodiazepine/GABAA receptor binding sites in infected animals. Moreover, in hippocampus, dot blot analysis revealed increased levels of protein carbonyls, suggesting occurrence of oxidative damage to proteins. Interestingly, no changes in the neuropathological markers Fluoro-Jade C, Timm staining or IBA-1 were detected. Altogether, present data indicate that behavioral and neurochemical alterations persist even after parasitemia clearance and CM recovery, which agrees with available clinical findings. Some of the molecular mechanisms reported in the present study may underlie the behavioral changes and increased seizure susceptibility that persist after recovery from CM and may help in the future development of therapeutic strategies for CM sequelae.


Assuntos
Comportamento Animal , Malária Cerebral/metabolismo , Malária Cerebral/psicologia , Plasmodium berghei/patogenicidade , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Córtex Cerebral/metabolismo , Feminino , Flunitrazepam/metabolismo , Fluoresceínas/metabolismo , Hipocampo/metabolismo , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Camundongos , Proteínas dos Microfilamentos/metabolismo , Carbonilação Proteica , Ensaio Radioligante , Receptores de GABA-A/metabolismo , Compostos de Prata/metabolismo , ATPase Trocadora de Sódio-Potássio/imunologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Trítio/metabolismo
2.
Neurosci Lett ; 523(2): 104-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22750161

RESUMO

Malaria is the most important human parasitic disease and cerebral malaria (CM), its main neurological complication, is characterized by neurological and cognitive damage in both human and animal survivors. The brain-derived neurotrophic factor (BDNF) appears to be involved with activity-dependent synaptic plasticity. There is great interest regarding its role in learning and memory as well as acetylcholinesterase activity (AChE) that is implicated in many cognitive functions and probably plays important roles in neurodegenerative disorders. In the present work, we evaluated BDNF protein levels and AChE activity in the hippocampus and habituation in an animal model of CM using C57BL/6 mice after fifteen days of the induction. The results demonstrated that there was a decrease in BDNF levels in the hippocampus of C57BL/6 mice infected with PbA when compared with C57BL/6 non-infected mice and C57BL/6 non-infected mice that received treatment with chloroquine. However, no difference was observed in AChE activity in the hippocampus. When habituation was evaluated there was memory impairment in the C57BL/6 mice infected with Plasmodium berghei ANKA (PbA). In conclusion, we believe that the decreased BDNF levels in the hippocampus may be related with memory impairment without alterations on AChE activity.


Assuntos
Acetilcolinesterase/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Malária Cerebral/metabolismo , Malária Cerebral/psicologia , Memória , Animais , Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Habituação Psicofisiológica , Malária Cerebral/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA