Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Malar J ; 23(1): 234, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103843

RESUMO

BACKGROUND: More than 95% of malaria transmission in Brazil occurs in the Legal Amazon Region, which in 2010 recorded around 333,429 cases reported in the Epidemiological Surveillance Information System-Malaria (Sivep_malaria), presenting an annual parasitic incidence (IPA) of 13.1 cases/1000 inhabitants. METHODS: This was a descriptive study that measured the community prevalence of Plasmodium infection and its relationship with land use in Três Fronteiras District, Colniza Municipality, Mato Grosso State. Data were collected during household visits in July 2011, with blood collection from finger pricks for the preparation of thick smear slides, and completion of a standardized case notification form. A georeferenced database was analysed, with land use evaluated as categorical variables. A kernel density map was built to show the density of cases and their location. RESULTS: Of the 621 respondents, 68(11%) had Plasmodium infection: 39 (57.4%) with Plasmodium vivax, 27(39.7%) with Plasmodium falciparum and two (2.9%) with mixed infections. Among infected individuals, 49 (72.1%) were men. Cases of malaria were distributed over the district, with greater occurrence of cases per household in open areas close to the mining company and artisanal mining sites. The was a greater density of cases located in the gold mining region. CONCLUSION: Transmission of malaria in Três Fronteiras District has a heterogeneous distribution. Individuals residing in mining and timber extraction sites have increased occurrence of Plasmodium infection.


Assuntos
Malária Falciparum , Malária Vivax , População Rural , Brasil/epidemiologia , Humanos , Feminino , Masculino , Adolescente , Adulto , População Rural/estatística & dados numéricos , Pessoa de Meia-Idade , Adulto Jovem , Criança , Pré-Escolar , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Prevalência , Lactente , Idoso , Incidência , Idoso de 80 Anos ou mais , Plasmodium vivax , Malária/epidemiologia , Malária/transmissão
2.
PLoS Negl Trop Dis ; 18(7): e0011879, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991038

RESUMO

BACKGROUND: Plasmodium vivax is the most predominant malaria species in Latin America, constituting 71.5% of malaria cases in 2021. With several countries aiming for malaria elimination, it is crucial to prioritize effectiveness of national control programs by optimizing the utilization of available resources and strategically implementing necessary changes. To support this, there is a need for innovative approaches such as genomic surveillance tools that can investigate changes in transmission intensity, imported cases and sources of reintroduction, and can detect molecular markers associated with drug resistance. METHODOLOGY/PRINCIPAL FINDINGS: Here, we apply a modified highly-multiplexed deep sequencing assay: Pv AmpliSeq v2 Peru. The tool targets a newly developed 41-SNP Peru barcode for parasite population analysis within Peru, the 33-SNP vivaxGEN-geo panel for country-level classification, and 11 putative drug resistance genes. It was applied to 230 samples from the Peruvian Amazon (2007-2020), generating baseline surveillance data. We observed a heterogenous P. vivax population with high diversity and gene flow in peri-urban areas of Maynas province (Loreto region) with a temporal drift using all SNPs detected by the assay (nSNP = 2909). In comparison, in an indigenous isolated area, the parasite population was genetically differentiated (FST = 0.07-0.09) with moderate diversity and high relatedness between isolates in the community. In a remote border community, a clonal P. vivax cluster was identified, with distinct haplotypes in drug resistant genes and ama1, more similar to Brazilian isolates, likely representing an introduction of P. vivax from Brazil at that time. To test its applicability for Latin America, we evaluated the SNP Peru barcode in P. vivax genomes from the region and demonstrated the capacity to capture local population clustering at within-country level. CONCLUSIONS/SIGNIFICANCE: Together this data shows that P. vivax transmission is heterogeneous in different settings within the Peruvian Amazon. Genetic analysis is a key component for regional malaria control, offering valuable insights that should be incorporated into routine surveillance.


Assuntos
Malária Vivax , Plasmodium vivax , Polimorfismo de Nucleotídeo Único , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/classificação , Peru/epidemiologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Humanos , Resistência a Medicamentos/genética , Genoma de Protozoário , Sequenciamento de Nucleotídeos em Larga Escala , Monitoramento Epidemiológico , Genômica
3.
PeerJ ; 12: e17632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948214

RESUMO

Background: The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods: We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results: This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.


Assuntos
Anticorpos Antiprotozoários , Biomarcadores , Malária Vivax , Proteína 1 de Superfície de Merozoito , Plasmodium vivax , Humanos , Malária Vivax/imunologia , Malária Vivax/sangue , Malária Vivax/parasitologia , Malária Vivax/transmissão , Malária Vivax/diagnóstico , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium vivax/imunologia , Biomarcadores/sangue , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Peptídeos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Adulto Jovem , Adolescente , Sequência de Aminoácidos
4.
PLoS One ; 19(7): e0305558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046959

RESUMO

BACKGROUND: Plasmodium vivax is the main causative agent of malaria in Panama. However, the prevalence of asymptomatic infections in the different endemic regions remains unknown. Understanding the epidemiological behavior of asymptomatic infections is essential for the elimination of malaria. This study aimed to determine the prevalence of asymptomatic malarial infections in one of the main endemic regions of Panama using multiplex real-time reverse transcription RT-MqPCR. METHODS: A cross-sectional study was conducted in three communities in the Guna Yala Comarca. A total of 551 thick blood smears and their respective samples on filter paper were collected from volunteers of different ages and sexes from June 20 to 25, 2016. Infections by the Plasmodium spp. were diagnosed using microscopy and RT-MqPCR. All statistical analyses were performed using the R software. RESULTS: The average prevalence of asymptomatic infections by P. vivax in the three communities detected by RT-MqPCR was 9.3%, with Ukupa having the highest prevalence (13.4%), followed by Aidirgandi (11.1%) and Irgandi (3.3%). A total of 74 samples were diagnosed as asymptomatic infections using RT-MqPCR. Light microscopy (LM) detected that 17.6% (13/74) of the asymptomatic samples and 82.4% (61/74) were diagnosed as false negatives. A 100% correlation was observed between samples diagnosed using LM and RT-MqPCR. A total of 52.7% (39/74) of the asymptomatic patients were female and 85.1% (63/74) were registered between the ages of 1 and 21 years. Factors associated with asymptomatic infection were community (aOR = 0.38 (95% CI 0.17-0.83), p < 0.001) and age aOR = 0.98 (95% CI 0.97-1.00), p < 0.05); F = 5.38; p < 0.05). CONCLUSIONS: This study provides novel evidence of the considerable prevalence of asymptomatic P. vivax infections in the endemic region of Kuna Yala, representing a new challenge that requires immediate attention from the National Malaria Program. The results of this study provide essential information for the health authorities responsible for developing new policies. Furthermore, it will allow program administrators to reorient and design effective malaria control strategies that consider asymptomatic infections as a fundamental part of malaria control and move towards fulfilling their commitment to eliminate it.


Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Panamá/epidemiologia , Feminino , Masculino , Adulto , Estudos Transversais , Adolescente , Malária Vivax/epidemiologia , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Adulto Jovem , Criança , Pessoa de Meia-Idade , Prevalência , Infecções Assintomáticas/epidemiologia , Pré-Escolar , Povos Indígenas/genética , Lactente , Reação em Cadeia da Polimerase em Tempo Real/métodos
5.
Sci Rep ; 14(1): 16291, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009685

RESUMO

Hard-to-reach communities represent Peru's main challenge for malaria elimination, but information about transmission in these areas is scarce. Here, we assessed Plasmodium vivax (Pv) and P. falciparum (Pf) transmission dynamics, resistance markers, and Pf hrp2/3 deletions in Nueva Jerusalén (NJ), a remote, indigenous community in the Peruvian Amazon with high population mobility. We collected samples from November 2019 to May 2020 by active (ACD) and passive case detection (PCD) in NJ. Parasites were identified with microscopy and PCR. Then, we analyzed a representative set of positive-PCR samples (Pv = 68, Pf = 58) using highly-multiplexed deep sequencing assays (AmpliSeq) and compared NJ parasites with ones from other remote Peruvian areas using population genetics indexes. The ACD intervention did not reduce malaria cases in the short term, and persistent malaria transmission was observed (at least one Pv infection was detected in 96% of the study days). In Nueva Jerusalen, the Pv population had modest genetic diversity (He = 0.27). Pf population had lower diversity (He = 0.08) and presented temporal clustering, one of these clusters linked to an outbreak in February 2020. Moreover, Pv and Pf parasites from NJ exhibited variable levels of differentiation (Pv Fst = 0.07-0.52 and Pf Fst = 0.11-0.58) with parasites from other remote areas. No artemisin resistance mutations but chloroquine (57%) and sulfadoxine-pyrimethamine (35-67%) were detected in NJ's Pf parasites. Moreover, pfhrp2/3 gene deletions were common (32-50% of parasites with one or both genes deleted). The persistent Pv transmission and the detection of a Pf outbreak with parasites genetically distinct from the local ones highlight the need for tailored interventions focusing on mobility patterns and imported infections in remote areas to eliminate malaria in the Peruvian Amazon.


Assuntos
Malária Falciparum , Malária Vivax , Plasmodium falciparum , Plasmodium vivax , Proteínas de Protozoários , Peru/epidemiologia , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Malária Vivax/transmissão , Proteínas de Protozoários/genética , Feminino , Masculino , Criança , Adulto , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Adolescente , Resistência a Medicamentos/genética , Pessoa de Meia-Idade , Povos Indígenas/genética , Adulto Jovem , Pré-Escolar , Genômica/métodos , Variação Genética , Antígenos de Protozoários/genética
6.
Infect Genet Evol ; 123: 105628, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936525

RESUMO

In malaria parasites, the erythrocyte binding-like proteins (EBL) are a family of invasion proteins that are attractive vaccine targets. In the case of Plasmodium vivax, the widespread malaria parasite, blood-stage vaccines have been largely focused on a single EBL candidate, the Duffy binding-like domain (DBL) of the Duffy binding protein (DBPII), due to its well-characterized role in the reticulocyte invasion. A novel P. vivax EBL family member, the Erythrocyte binding protein (EBP2, also named EBP or DBP2), binds preferentially to reticulocytes and may mediate an alternative P. vivax invasion pathway. To gain insight into the natural genetic diversity of the DBL domain of EBP2 (region II; EBP2-II), we analyzed ebp2-II gene sequences of 71 P. vivax isolates collected in different endemic settings of the Brazilian Amazon rainforest, where P. vivax is the predominant malaria-associated species. Although most of the substitutions in the ebp2-II gene were non-synonymous and suggested positive selection, the results showed that the DBL domain of the EBP2 was much less polymorphic than that of DBPII. The predominant EBP2 haplotype in the Amazon region corresponded to the C127 reference sequence first described in Cambodia (25% C127-like haplotype). An overview of ebp2-II gene sequences available at GenBank (n = 352) from seven countries (Cambodia, Madagascar, Myanmar, PNG, South Korea, Thailand, Vietnam) confirmed the C127-like haplotype as highly prevalent worldwide. Two out of 43 haplotypes (5 to 20 inferred per country) showed a global frequency of 60%. The results presented here open new avenues of research pursuit while suggesting that a vaccine based on the DBL domain of EBP2 should target a few haplotypes for broad coverage.


Assuntos
Variação Genética , Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Malária Vivax/parasitologia , Humanos , Floresta Úmida , Filogenia , Haplótipos , Antígenos de Protozoários/genética , Domínios Proteicos , Receptores de Superfície Celular
7.
Antimicrob Agents Chemother ; 68(7): e0033824, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38837364

RESUMO

The human malaria-Aotus monkey model has served the malaria research community since its inception in 1966 at the Gorgas Memorial Laboratory (GML) in Panama. Spanning over five decades, this model has been instrumental in evaluating the in vivo efficacy and pharmacokinetics of a wide array of candidate antimalarial drugs, whether used singly or in combination. The animal model could be infected with drug-resistant and susceptible Plasmodium falciparum and Plasmodium vivax strains that follow a characteristic and reproducible course of infection, remarkably like human untreated and treated infections. Over the years, the model has enabled the evaluation of several synthetic and semisynthetic endoperoxides, for instance, artelinic acid, artesunate, artemether, arteether, and artemisone. These compounds have been evaluated alone and in combination with long-acting partner drugs, commonly referred to as artemisinin-based combination therapies, which are recommended as first-line treatment against uncomplicated malaria. Further, the model has also supported the evaluation of the primaquine analog tafenoquine against blood stages of P. vivax, contributing to its progression to clinical trials and eventual approval. Besides, the P. falciparum/Aotus model at GML has also played a pivotal role in exploring the biology, immunology, and pathogenesis of malaria and in the characterization of drug-resistant P. falciparum and P. vivax strains. This minireview offers a historical overview of the most significant contributions made by the Panamanian owl monkey (Aotus lemurinus lemurinus) to malaria chemotherapy research.


Assuntos
Antimaláricos , Artemisininas , Modelos Animais de Doenças , Animais , Antimaláricos/uso terapêutico , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Humanos , Panamá , Aotidae , Plasmodium falciparum/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Artesunato/uso terapêutico , Artesunato/farmacologia , Artesunato/farmacocinética , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , História do Século XX , Aminoquinolinas
8.
Malar J ; 23(1): 116, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664687

RESUMO

BACKGROUND: Pregnancy Associated Malaria (PAM) include malaria in pregnancy (MiP), placental malaria (PM), and congenital malaria (CM). The evidence available in Colombia on PAM focuses on one of the presentations (MiP, PM or CM), and no study longitudinally analyses the infection from the pregnant woman, passing through the placenta, until culminating in the newborn. This study determined the frequency of MiP, PM, and CM caused by Plasmodium vivax, Plasmodium falciparum, or mixed infections, according to Thick Blood Smear (TBS) and quantitative Polymerase Chain Reaction (qPCR). Identifying associated factors of PAM and clinical-epidemiological outcomes in northwestern Colombia. METHODS: Prospective study of 431 pregnant women, their placenta, and newborns registered in the data bank of the research Group "Salud y Comunidad César Uribe Piedrahíta" which collected information between 2014 and 2020 in endemic municipalities of the departments of Córdoba and Antioquia. The frequency of infection was determined with 95% confidence intervals. Comparisons were made with the Chi-square test, Student t-test, prevalence ratios, and control for confounding variables by log-binomial regression. RESULTS: The frequency of MiP was 22.3% (4.6% using TBS), PM 24.8% (1.4% using TBS), and CM 11.8% (0% using TBS). Using TBS predominated P. vivax. Using qPCR the proportions of P. vivax and P. falciparum were similar for MiP and PM, but P. falciparum predominated in CM. The frequency was higher in nulliparous, and women with previous malaria. The main clinical effects of PAM were anaemia, low birth weight, and abnormal APGAR score. CONCLUSIONS: The magnitude of infections was not detected with TBS because most cases were submicroscopic (TBS-negative, qPCR-positive). This confirmed the importance of improving the molecular detection of cases. PAM continue being underestimated in the country due to that in Colombia the control programme is based on TBS, despite its outcomes on maternal, and congenital health.


Assuntos
Malária Falciparum , Malária Vivax , Complicações Parasitárias na Gravidez , Humanos , Feminino , Gravidez , Colômbia/epidemiologia , Estudos Prospectivos , Adulto , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Adulto Jovem , Recém-Nascido , Complicações Parasitárias na Gravidez/epidemiologia , Complicações Parasitárias na Gravidez/parasitologia , Adolescente , Plasmodium falciparum/isolamento & purificação , Prevalência , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/fisiologia , Placenta/parasitologia , Doenças Placentárias/epidemiologia , Doenças Placentárias/parasitologia
9.
Acta Trop ; 255: 107231, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685340

RESUMO

Malaria remains a public health challenge. Since many control strategies have proven ineffective in eradicating this disease, new strategies are required, among which the design of a multivalent vaccine stands out. However, the effectiveness of this strategy has been hindered, among other reasons, by the genetic diversity observed in parasite antigens. In Plasmodium vivax, the Erythrocyte Binding Protein (PvEBP, also known as DBP2) is an alternate ligand to Duffy Binding Protein (DBP); given its structural resemblance to DBP, EBP/DBP2 is proposed as a promising antigen for inclusion in vaccine design. However, the extent of genetic diversity within the locus encoding this protein has not been comprehensively assessed. Thus, this study aimed to characterize the genetic diversity of the locus encoding the P. vivax EBP/DBP2 protein and to determine the evolutionary mechanisms modulating this diversity. Several intrapopulation genetic variation parameters were estimated using 36 gene sequences of PvEBP/DBP2 from Colombian P. vivax clinical isolates and 186 sequences available in databases. The study then evaluated the worldwide genetic structure and the evolutionary forces that may influence the observed patterns of genetic variation. It was found that the PvEBP/DBP2 gene exhibits one of the lowest levels of genetic diversity compared to other vaccine-candidate antigens. Four major haplotypes were shared worldwide. Analysis of the protein's 3D structure and epitope prediction identified five regions with potential antigenic properties. The results suggest that the PvEBP/DBP2 protein possesses ideal characteristics to be considered when designing a multivalent effective antimalarial vaccine against P. vivax.


Assuntos
Antígenos de Protozoários , Variação Genética , Vacinas Antimaláricas , Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/genética , Malária Vivax/prevenção & controle , Malária Vivax/parasitologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Colômbia , Filogenia , Receptores de Superfície Celular
10.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683374

RESUMO

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Assuntos
Malária Vivax , Plasmodium vivax , Proteínas de Protozoários , Plasmodium vivax/genética , Plasmodium vivax/isolamento & purificação , Brasil , Humanos , Malária Vivax/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Caspases/genética , Caspases/metabolismo , Expressão Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA