Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
J Mol Histol ; 55(3): 253-264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38551737

RESUMO

Prostate cancer (PCa) is the second cause of cancer death among men worldwide. Several processes are involved in the development and progression of PCa such as angiogenesis, inflammation and oxidative stress. The present study investigated the effect of short- or long-term Tempol treatment at different stages of prostate adenocarcinoma progression, focusing on angiogenic, proliferative, and stromal remodeling processes in TRAMP mice. The dorsolateral lobe of the prostate of TRAMP mice were evaluated at two different stages of PCa progression; early and late stages. Early stage was again divided into, short- or long-term. 50 mg/kg Tempol dose was administered orally. The results demonstrated that Tempol mitigated the prostate histopathological lesion progressions in the TRAMP mice in all treated groups. However, Tempol increased molecules involved in the angiogenic process such as CD31 and VEGFR2 relative frequencies, particularly in long-term treatment. In addition, Tempol upregulated molecule levels involved in angiogenesis and stromal remodeling process VEGF, TGF-ß1, VE-cadherin and vimentin, particularly, in T8-16 group. Thus, it was concluded that Tempol treatment delayed prostatic lesion progression in the dorsolateral lobe of the TRAMP mice. However, Tempol also led to pro-angiogenic effects and glandular stromal microenvironment imbalance, especially, in the long-term treatment.


Assuntos
Óxidos N-Cíclicos , Neovascularização Patológica , Neoplasias da Próstata , Marcadores de Spin , Masculino , Animais , Óxidos N-Cíclicos/farmacologia , Óxidos N-Cíclicos/uso terapêutico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/irrigação sanguínea , Neovascularização Patológica/tratamento farmacológico , Camundongos , Progressão da Doença , Angiogênese
2.
Magn Reson Med ; 92(2): 836-852, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38502108

RESUMO

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.


Assuntos
Encéfalo , Circulação Cerebrovascular , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Marcadores de Spin , Humanos , Circulação Cerebrovascular/fisiologia , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Masculino , Feminino , Adulto , Algoritmos
3.
J Biomol Struct Dyn ; 41(12): 5685-5695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35787240

RESUMO

Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to characterize the interactions of amphotericin B (AmB), miltefosine (MIL) and nerolidol (NER) with the plasma membrane of Paracoccidioides brasiliensis. Spin-labeled analogs of stearic acid and steroid androstane distributed into the plasma membrane of the fungus treated with AmB, showed strong interactions with putative AmB/sterol complexes. The observed increase in the EPR parameter 2A// caused by AmB can be interpreted as a remarkable reduction in the spin label mobility and/or an increase in the local polarity. The 2A// parameter reduced gradually as the concentration of MIL and NER increased. The membrane-water partition coefficient (KM/W) of the three compounds under study was estimated based on the minimum concentration of the compounds that causes a change in EPR spectrum. The KM/W values indicated that the affinity of the compounds for the P. brasiliensis membrane follows the order: AmB > MIL > NER. The minimum inhibitory concentration (MIC) values were lower than the respective minimum concentrations of the compounds to cause a change in the EPR spectrum, being ∼3.5-fold lower for AmB, 3.9-fold for MIL and ∼1.4-fold for NER. Taken together, the EPR spectroscopy results suggest that the anti-proliferative effects of the three compounds studied are associated with alterations in cell membranes. One of the most likely consequences of these changes would be electrolyte leakage.Communicated by Ramaswamy H. Sarma.


Assuntos
Anfotericina B , Paracoccidioides , Espectroscopia de Ressonância de Spin Eletrônica , Anfotericina B/farmacologia , Anfotericina B/metabolismo , Membrana Celular/metabolismo , Marcadores de Spin
4.
Free Radic Res ; 56(3-4): 245-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35549793

RESUMO

Background Ca2+ dysregulation and oxidative damage appear to have a central role in Duchenne muscular dystrophy (DMD) progression. The current study provides muscle cell-specific insights into the effect of Tempol on the TRPC 1 channel; on the positive and negative regulators of muscle cell differentiation; on the antioxidant enzymatic system; on the activators of mitochondrial biogenesis; and on the inflammatory process in the dystrophic primary muscle cells in culture. METHODS: Mdx myotubes were treated with Tempol (5 mM) for 24 h. Untreated mdx myotubes and C57BL/10 myotubes were used as controls. RESULTS: The Trypan Blue, MTT and Live/Dead Cell assays showed that Tempol (5 mM) presented no cytotoxic effect on the dystrophic muscle cells. The Tempol treated-mdx muscle cells showed significantly lower levels in the fluorescence intensity of intracellular calcium; TRPC-1 channel; MyoD; H2O2 and O2•- production; 4-HNE levels; SOD2, CAT and GPx levels; and TNF levels. On the other hand, SOD, CAT and GR mRNA relative expression were significantly higher in Tempol treated-mdx muscle cells. In addition, higher levels of Myogenin, MHC-Slow, mTOR, PGC-1α and PPARδ were also observed in Tempol treated-mdx muscle cells. CONCLUSION: Our findings demonstrated that Tempol decreased intracellular calcium and oxidative stress in primary dystrophic muscle cells, promoting a cross-talk between TRPC-1, mTOR, PGC-1α and PPARδ.


Assuntos
PPAR delta , Animais , Cálcio/metabolismo , Óxidos N-Cíclicos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , PPAR delta/metabolismo , PPAR delta/farmacologia , Marcadores de Spin , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
5.
NMR Biomed ; 35(8): e4742, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35429194

RESUMO

Cerebral small vessel disease (cSVD), a common cause of stroke and dementia, is traditionally considered the small vessel equivalent of large artery occlusion or rupture that leads to cortical and subcortical brain damage. Microvessel endothelial dysfunction can also contribute to it. Brain imaging, including MRI, is useful to show the presence of lesions of several types, although the association between conventional MRI measures and clinical features of cSVD is not always concordant. We assessed the additional contribution of contrast-agent-free, state-of-the-art MRI techniques such as arterial spin labeling (ASL), diffusion tensor imaging, functional MRI, and intravoxel incoherent motion (IVIM) applied to cSVD in the existing literature. We performed a review following the PICO Worksheet and Search Strategy, including original papers in English, published between 2000 and 2022. For each MRI method, we extracted information about their contributions, in addition to those established with traditional MRI methods and related information about the origins, pathology, markers, and clinical outcomes in cSVD. This paper presents the first part of the review, which includes 37 studies focusing on ASL, IVIM, and cerebrovascular reactivity (CVR) measures. In general, they have shown that, in addition to white matter hyperintensities, alterations in other neuroimaging parameters such as blood flow and CVR also indicate the presence of cSVD. Such quantitative parameters were also related to cSVD risk factors. Therefore, they are promising, noninvasive tools to explore questions that have not yet been clarified about this clinical condition. However, protocol standardization is essential to increase their clinical use.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Meios de Contraste , Artérias , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética/métodos , Marcadores de Spin
6.
Semin Thorac Cardiovasc Surg ; 34(4): 1285-1295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34767938

RESUMO

To identify regional cerebral blood flow (rCBF) alterations in children and adolescents with congenital heart disease (CHD) in relation to neurocognitive outcomes using a nonbiased data-driven approach. This is a prospective, observational study of children and adolescents with CHD without brain injury and healthy controls using pseudo-continuous arterial spin labeling (pCASL) MRI. Quantitative rCBF was compared between participants with CHD and healthy controls using a voxelwise data-driven method. Mediation analysis was then performed on a voxelwise basis, with the grouping variable as the independent variable, neurocognitive outcomes (from the NIH Toolbox Cognitive Battery) as the dependent variables, and rCBF as the mediator. After motion correction, a total of 80 studies were analyzable (27 for patients with CHD, 53 for controls). We found steeper age-related decline in rCBF among those with CHD compared to normal controls in the insula/ventromedial prefrontal regions (salience network) and the dorsal anterior cingulate and precuneus/posterior cingulate (default mode network), and posterior parietal/dorsolateral prefrontal (central executive network) (FWE-corrected P< 0.05). The reduced rCBF in the default mode/salience network was found to mediate poorer performance on an index of crystallized cognition from the NIH Toolbox Cognitive Battery in those with CHD compared to controls. In contrast, reduced rCBF in the central executive network/salience network mediated reduced deficits in fluid cognition among patients with CHD compared to controls. Regional cerebral blood flow alterations mediate domain-specific differences in cognitive performance in children and adolescents with CHD compared to healthy controls, independent of injury, and are likely related to brain and cognitive reserve mechanisms. Further research is needed to evaluate the potential of interventions in CHD targeting regional cerebral blood flow across lifespan.


Assuntos
Circulação Cerebrovascular , Cardiopatias Congênitas , Criança , Humanos , Adolescente , Marcadores de Spin , Resultado do Tratamento , Circulação Cerebrovascular/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico por imagem , Fluxo Sanguíneo Regional/fisiologia
7.
Eur J Radiol ; 144: 109995, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34628310

RESUMO

BACKGROUND: The study of muscle health has become more relevant lately, due to global aging and a higher incidence of musculoskeletal pathologies. Current exploration techniques, such as electromyography, do not provide accurate spatial information. OBJECTIVE: The objective of this work is to perform a systematic review of the literature to synthesize the contributions that can offer functional MRI techniques commonly used in neuroimaging, applied to skeletal muscle: Blood Oxygen Level Dependent (BOLD), IntraVoxel Incoherent Motion (IVIM), Arterial Spin Labeling (ASL) and Dynamic Contrast Enhanced (DCE). EVIDENCE ACQUISITION: Web of Science and Medline databases were searched, over the last 10 years, focused on the use of BOLD, ASL, IVIM or DCE in skeletal muscle. EVIDENCE SYNTHESIS: 59 articles were included after applying the selection criteria. 37 studies were performed in healthy subjects, and 22 in patients with different pathologies: in peripheral arterial disease, systemic sclerosis, diabetes, osteoporosis, adolescent idiopathic scoliosis, and dermatomyositis. Reference values in healthy subjects still vary in some cases. CONCLUSION: The studies show the feasibility of implementing functional MRI through BOLD, ASL, IVIM or DCE imaging in several muscles and their possible utility in different pathologies. A synthesis of how to implement such exploration is given here. CLINICAL IMPACT: These four techniques are based on sequences already present in clinical MRI scanners, therefore, their use for functional muscle exploration does not require additional investment. These techniques allow visualization and quantification of parameters associated with the vascular health of the muscles and represent interesting support for musculoskeletal exploration.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Adolescente , Imagem de Difusão por Ressonância Magnética , Humanos , Movimento (Física) , Músculo Esquelético/diagnóstico por imagem , Marcadores de Spin
8.
Chem Biol Interact ; 349: 109658, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543659

RESUMO

Nitric oxide (NO) metabolites have physiological and pharmacological importance and increasing their tissue concentrations may result in beneficial effects. Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) has antioxidant properties that may improve NO bioavailability. Moreover, tempol increases oral nitrite-derived gastric formation of S-nitrosothiols (RSNO). We hypothesized that pretreatment with tempol may further increase tissue concentrations of NO-related species after oral nitrite administration and therefore we carried out a time-dependent analysis of how tempol affects the concentrations of NO metabolites in different tissues after oral nitrite administration to rats. NO metabolites (nitrate, nitrite and RSNO) were assessed by ozone-based reductive chemiluminescence assays in plasma, stomach, aorta, heart and liver samples obtained from anesthetized rats at baseline conditions and 15 min, 30 min, 2 h or 24 h after oral nitrite (15 mg/kg) was administered to rats pretreated with tempol (18 mg/kg) or vehicle 15 min prior to nitrite administration. Aortic protein nitrosation was assessed by resin-assited capture (SNO-RAC) method. We found that pretreatment with tempol transiently enhanced nitrite-induced increases in nitrite, RSNO and nitrate concentrations in the stomach and in the plasma (all P < 0.05), particularly for 15-30 min, without affecting aortic protein nitrosation. Pretreatment with tempol enhanced nitrite-induced increases in nitrite (but not RSNO or nitrate) concentrations in the heart (P < 0.05). In contrast, tempol attenuated nitrite-induced increases in nitrite, RSNO or nitrate concentrations in the liver. These findings show that pretreatment with tempol affects oral nitrite-induced changes in tissue concentrations of NO metabolites depending on tissue type and does not increase nitrite-induced vascular nitrosation. These results may indicate that oral nitrite therapy aiming at achieving increased nitrosation of cardiovascular targets requires appropriate doses of nitrite and is not optimized by tempol.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Óxido Nítrico/metabolismo , Nitritos/administração & dosagem , Administração Oral , Animais , Masculino , Nitratos/sangue , Nitritos/sangue , Ratos , Ratos Wistar , Marcadores de Spin
9.
Nitric Oxide ; 115: 23-29, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133975

RESUMO

INTRODUCTION: The mechanical obstruction and pulmonary vasoconstriction are major determinants of the sudden right ventricular (RV) afterload increases observed during acute pulmonary thromboembolism (APT). Vasodilators and antioxidants agents have been shown to mitigate pulmonary hypertension. We examined whether sodium nitrite and the antioxidant tempol combination could be advantageous in an APT sheep model. METHODS: APT was induced in anesthetized sheep by autologous blood clots (250 mg/kg) into the right atrium. Thirty minutes after APT induction, the animals received a continuous infusion of tempol (1.0 mg/kg/min), increasing sodium nitrite infusion (5, 15, and 50 µmol/kg), or a simultaneous combination of both drugs. Saline was used as a control treatment. Hemodynamic measurements were carried out every 15 min. Also, whole blood nitrite and serum 8-isoprostanes levels were measured. RESULTS: APT induced sustained pulmonary hypertension, increased dp/dtmax, and rate pressure product (RPP). Nitrite or tempol treatments attenuated these increases (P < 0.05). When both drugs were combined, we found a robust reduction in the RV RPP compared with the treatments alone (P < 0.05). The sole nitrite infusion increased blood nitrite concentrations by 35 ± 6 µM (P < 0.05), whereas the nitrite and tempol combination produced higher blood nitrite concentrations by approximately 54 ± 7 µM. Tempol or nitrite infusions, both alone or combined, blunted the increases in 8-isoprostane concentrations observed after APT. CONCLUSIONS: Nitrite and tempol combination protects against APT-induced RV wall stress. The association of both drugs may offer an advantage to treat RV failure during severe APT.


Assuntos
Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Nitrito de Sódio/farmacologia , Doença Aguda , Animais , Antioxidantes/administração & dosagem , Óxidos N-Cíclicos/administração & dosagem , Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/metabolismo , Masculino , Ovinos , Nitrito de Sódio/administração & dosagem , Marcadores de Spin
10.
J Neural Eng ; 18(4)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34087805

RESUMO

Objective. Semantic verbal fluency (SFV) is a cognitive process that engages and modulates specific brain areas related to language comprehension and production, decision making, response inhibition, and memory retrieval. The impairment of the brain network responsible for these functions is related to various neurological conditions, and different strategies have been proposed to assess SVF-related deficits in such diseases. In the present study, the concomitant changes of brain perfusion and functional connectivity were investigated during the resting state and SVF task performance.Approach. Arterial spin labeling (ASL), a perfusion-based magnetic resonance imaging (MRI) method, was used with a pseudocontinuous labeling approach and dual-echo readout in 28 healthy right-handed Brazilian Portuguese speakers. The acquisition was performed in a resting state condition and during the performance of a SVF task.Main results. During task performance, a significant increase in cerebral blood flow (CBF) was observed in language-related regions of the frontal lobe, including Brodmann's areas 6, 9, 45, and 47, associated with semantic processing, word retrieval, and speech motor programming. Such regions, along with the posterior cingulate, showed a crucial role in the SVF functional network, assessed by seed-to-voxel and graph analysis. Our approach successfully overcame the generalization problem regarding functional MRI (fMRI) graph analysis with cognitive, task-based paradigms. Moreover, the CBF maps enabled the functional assessment of orbital frontal and temporal regions commonly affected by magnetic susceptibility artifacts in conventional T2*-weighted fMRI approaches.Significance. Our results demonstrated the capability of ASL to evaluate perfusion alterations and functional patterns simultaneously regarding the SVF network providing a quantitative physiological basis to functional hubs in this network, which may support future clinical studies.


Assuntos
Mapeamento Encefálico , Semântica , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA