Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 203(1-2): 79-93, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798536

RESUMO

Hibernation is an adaptive strategy that allows animals to enter a hypometabolic state, conserving energy and enhancing their fitness by surviving harsh environmental conditions. However, addressing the adaptive value of hibernation, at the individual level and in natural populations, has been challenging. Here, we applied a non-invasive technique, body composition analysis by quantitative magnetic resonance (qMR), to calculate energy savings by hibernation in a population of hibernating marsupials (Dromiciops gliroides). Using outdoor enclosures installed in a temperate rainforest, and measuring qMR periodically, we determined the amount of fat and lean mass consumed during a whole hibernation cycle. With this information, we estimated the daily energy expenditure of hibernation (DEEH) at the individual level and related to previous fat accumulation. Using model selection approaches and phenotypic selection analysis, we calculated linear (directional, ß), quadratic (stabilizing or disruptive, γ) and correlational (ρ) coefficients for DEEH and fat accumulation. We found significant, negative directional selection for DEEH (ßDEEH = - 0.58 ± 0.09), a positive value for fat accumulation (ßFAT = 0.34 ± 0.07), and positive correlational selection between both traits (ρDEEH × FAT = 0.24 ± 0.07). Then, individuals maximizing previous fat accumulation and minimizing DEEH were promoted by selection, which is visualized by a bi-variate selection surface estimated by generalized additive models. At the comparative level, results fall within the isometric allometry known for hibernation metabolic rate in mammals. Thus, by a combination of a non-invasive technique for body composition analysis and semi-natural enclosures, we were characterized the heterothermic fitness landscape in a semi-natural population of hibernators.


Assuntos
Hibernação , Marsupiais , Humanos , Animais , Marsupiais/metabolismo , Mamíferos , Metabolismo Energético , Composição Corporal
2.
Physiol Biochem Zool ; 95(3): 239-250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443149

RESUMO

AbstractHibernation (i.e., seasonal or multiday torpor) has been described in mammals from five continents and represents an important adaptation for energy economy. However, direct quantifications of energy savings by hibernation are challenging because of the complexities of estimating energy expenditure in the field. Here, we applied quantitative magnetic resonance to determine body fat and body composition in hibernating Dromiciops gliroides (monito del monte). During an experimental period of 31 d in winter, fat was significantly reduced by 5.72±0.45 g, and lean mass was significantly reduced by 2.05±0.14 g. This fat and lean mass consumption is equivalent to a daily energy expenditure of hibernation (DEEH) of 8.89±0.6 kJ d-1, representing 13.4% of basal metabolic rate, with a proportional contribution of fat and lean mass consumption to DEEH of 81% and 18%, respectively. During the deep heterothermic bouts of monitos, body temperature remained 0.41°C ± 0.2°C above ambient temperature, typical of hibernators. Animals shut down metabolism and passively cool down to a critical defended temperature of 5.0°C ± 0.1°C, where they begin thermoregulation in torpor. Using temperature data loggers, we obtained an empirical estimation of minimum thermal conductance of 3.37±0.19 J g-1 h-1 °C-1, which is 107% of the expectation by allometric equations. With this, we parameterized body temperature/ambient temperature time series to calculate torpor parameters and metabolic rates in euthermia and torpor. Whereas the acute metabolic fall in each torpor episode is about 96%, the energy saved by hibernation is 88% (compared with the DEE of active animals), which coincides with values from the literature at similar body mass. Thus, estimating body composition provides a simple method to measure the energy saved by hibernation in mammals.


Assuntos
Hibernação , Marsupiais , Torpor , Animais , Composição Corporal , Temperatura Corporal , Metabolismo Energético , Mamíferos , Marsupiais/metabolismo , América do Sul
3.
Mol Ecol ; 27(22): 4489-4500, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30240506

RESUMO

The small South American marsupial, Dromiciops gliroides, known as the missing link between the American and the Australian marsupials, is one of the few South American mammals known to hibernate. Expressing both daily torpor and seasonal hibernation, this species may provide crucial information about the mechanisms and the evolutionary origins of marsupial hibernation. Here, we compared torpid and active individuals, applying high-throughput sequencing technologies (RNA-seq) to profile gene expression in three D. gliroides tissues and determine whether hibernation induces tissue-specific differential gene expression. We found 566 transcripts that were significantly up-regulated during hibernation (369 in brain, 147 in liver and 50 in skeletal muscle) and 339 that were down-regulated (225 in brain, 79 in liver and 35 in muscle). The proteins encoded by these differentially expressed genes orchestrate multiple metabolic changes during hibernation, such as inhibition of angiogenesis, prevention of muscle disuse atrophy, fuel switch from carbohydrate to lipid metabolism, protection against reactive oxygen species and repair of damaged DNA. According to the global enrichment analysis, brain cells seem to differentially regulate a complex array of biological functions (e.g., cold sensitivity, circadian perception, stress response), whereas liver and muscle cells prioritize fuel switch and heat production for rewarming. Interestingly, transcripts of thioredoxin-interacting protein (TXNIP), a potent antioxidant, were significantly over-expressed during torpor in all three tissues. These results suggest that marsupial hibernation is a controlled process where selected metabolic pathways show adaptive modulation that can help to maintain homeostasis and enhance cytoprotection in the hypometabolic state.


Assuntos
Hibernação/genética , Marsupiais/genética , Transcriptoma , Animais , Encéfalo/metabolismo , Chile , Regulação da Expressão Gênica , Fígado/metabolismo , Marsupiais/metabolismo , Células Musculares/metabolismo , Termogênese , Torpor/genética
4.
J Exp Zool A Ecol Genet Physiol ; 325(1): 41-51, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26553608

RESUMO

Torpor is a phenotype characterized by a controlled decline of metabolic rate and body temperature. During arousal from torpor, organs undergo rapid metabolic reactivation and rewarming to near normal levels. As torpor progress, animals show a preference for fatty acids over glucose as primary source of energy. Here, we analyzed for first time the changes in the maximal activity of key enzymes related to fatty acid (Carnitine palmitoyltransferase and ß-Hydroxyacyl CoA dehydrogenase) and carbohydrate (Pyruvate kinase, Phosphofructokinase and Lactate dehydrogenase) catabolism, as well as mitochondrial oxidative capacity (Citrate synthase), in six organs of torpid, arousing and euthermic Chilean mouse-opossums (Thylamys elegans). Our results showed that activity of enzymes related to fatty acid and carbohydrate catabolism were different among torpor phases and the pattern of variation differs among tissues. In terms of lipid utilization, maximal enzymatic activities differ in tissues with high oxidative capacity such as heart, kidney, and liver. In terms of carbohydrate use, lower enzymatic activities were observed during torpor in brain and liver. Interestingly, citrate synthase activity did not differ thought torpor-arousal cycle in any tissues analyzed, suggesting no modulation of mitochondrial content in T. elegans. Overall results provide an indication that modulation of enzymes associated with carbohydrate and fatty-acid pathways is mainly oriented to limit energy expensive processes and sustain energy metabolism during transition from torpor to euthermy. Future studies are required to elucidate if physiological events observed for T. elegans are unique from other marsupials, or represents a general response in marsupials. J. Exp. Zool. 325A:41-51, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Metabolismo Energético/genética , Marsupiais/metabolismo , Mitocôndrias/metabolismo , Gambás/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Citrato (si)-Sintase/metabolismo , L-Lactato Desidrogenase/metabolismo , Marsupiais/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Gambás/metabolismo , Piruvato Quinase/metabolismo , Torpor/genética , Torpor/fisiologia
5.
Oxid Med Cell Longev ; 2015: 940627, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26583063

RESUMO

In addition to be the cell's powerhouse, mitochondria also contain a cell death machinery that includes highly regulated processes such as the membrane permeability transition pore (PTP) and reactive oxygen species (ROS) production. In this context, the results presented here provide evidence that liver mitochondria isolated from Gracilinanus microtarsus, a small and short life span (one year) marsupial, when compared to mice, are much more susceptible to PTP opening in association with a poor NADPH dependent antioxidant capacity. Liver mitochondria isolated from the marsupial are well coupled and take up Ca(2+) but exhibited a much lower Ca(2+) retention capacity than mouse mitochondria. Although the known PTP inhibitors cyclosporin A, ADP, and ATP significantly increased the marsupial mitochondria capacity to retain Ca(2+), their effects were much larger in mice than in marsupial mitochondria. Both fluorescence and HPLC analysis of mitochondrial nicotinamide nucleotides showed that both content and state of reduction (mainly of NADPH) were lower in the marsupial mitochondria than in mice mitochondria despite the similarity in the activity of the glutathione peroxidase/reductase system. Overall, these data suggest that PTP opening is an important event in processes of Ca(2+) signalling to cell death mediated by mitochondrial redox imbalance in G. microtarsus.


Assuntos
Cálcio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , NAD/química , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Ciclosporina/farmacologia , Glutationa Peroxidase/metabolismo , Íons/química , Longevidade , Marsupiais/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial , NAD/análise , NADP Trans-Hidrogenases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-25047800

RESUMO

Many mammals hibernate, which is a profound lethargic state of several weeks or months during winter, that represents a transitory episode of hetherothermy. As with other cases of dormancy, the main benefit of hibernation seems to be energy saving. However, the depth and duration of torpor can be experimentally modified by the composition of food, especially by fattyacid composition. In eutherians, diets rich in unsaturated fatty acids (i.e., fatty acids with at least one double bond) lengthen torpor, reduce metabolism and permit hibernation at lower temperatures. Here we studied whether diets varying in fatty acid composition have an effect on the physiology of hibernation in a South American marsupial, Dromiciops gliroides. We designed a factorial experiment where thermal acclimation (two levels: natural versus constant temperature) was combined with diet acclimation: saturated (i.e., diets with high concentration of saturated fatty acids) versus unsaturated (i.e., diets with high concentration of unsaturated fatty acids). We measured energy metabolism in active and torpid individuals, as well as torpor duration, and a suite of 12 blood biochemical parameters. After a cafeteria test, we found that D. gliroides did not show any preference for a given diet. Also, we did not find effects of diet on body temperature during torpor, or its duration. However, saturated diets, combined with high temperatures provoked a disproportionate increase in fat utilization, leading to body mass reduction. Those animals were more active, and metabolized more fats than those fed with a high proportion of unsaturated fatty acids (="unsaturated diets"). These results contrast with previous studies, which showed a significant effect of fatty acid composition of diets on food preferences and torpor patterns in mammals.


Assuntos
Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos Insaturados/metabolismo , Hibernação/fisiologia , Marsupiais/metabolismo , Marsupiais/fisiologia , Animais , Índice de Massa Corporal , Metabolismo Energético/fisiologia , Estações do Ano , Temperatura , Torpor/fisiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-21627996

RESUMO

The microbiotherid marsupial Dromiciops gliroides inhabits the temperate forests of the Southern hemisphere, facing seasonal nutritional and energetic bottlenecks due to its apparently facultative insectivory/frugivory. In order to understand the physiological processes behind this ecological pattern, we studied the morpho-physiological changes that D. gliroides exhibits after dietary acclimation, in a sample of 21 wild-caught individuals fed over 1 month with ad libitum diet of: (1) fruit, (2) insects or (3) a mix of insects and fruit. In addition, we measured oxygen consumption (VO(2)) at resting conditions. We also performed enzyme assays (sucrase, maltase, trehalase and aminopeptidase N) and measurements of organ morphology. We found that D. gliroides cannot fulfil its nutrient requirements only from insects or fruit. It needs a mixed diet in order to maintain its body mass and energy balance. However, as a response of diet acclimation, individuals showed several-fold changes in the activities of aminopeptidase-N, maltase and sucrase (but not trehalase). This result, both the magnitude of change and the simultaneous effects on three enzymes suggests that D. gliroides could exhibit adaptive phenotypic plasticity in the activity of intestinal enzymes. This study suggests also that D. gliroides, the only living representative of the Microbiotheria order, exhibits physiological adaptations to a generalist diet.


Assuntos
Metabolismo Energético , Intestino Delgado/enzimologia , Marsupiais/fisiologia , Adaptação Fisiológica , Animais , Chile , Dieta , Intestino Delgado/anatomia & histologia , Fígado/anatomia & histologia , Marsupiais/metabolismo , Tamanho do Órgão , Consumo de Oxigênio , Fenótipo , Redução de Peso
8.
J Exp Biol ; 212(Pt 2): 297-304, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19112149

RESUMO

In evolutionary physiology, studies of inter-individual variation (i.e. repeatability) in functional capacities are valuable as they indicate - within populations - what attributes could respond to natural selection. Although repeatability and quantitative genetics of physiological traits in energy metabolism of eutherian mammals have been well characterized, few or no studies have been performed on marsupials. We studied the repeatability (i.e. intraclass correlation coefficient, tau) of bioenergetics for Monito del Monte (Dromiciops gliroides), the sole living representative of an otherwise extinct marsupial order (Microbiotheria). We measured resting metabolic rate as CO(2) production (V(CO(2))) and O(2) consumption (V(O(2))) simultaneously, together with minimum thermal conductance (C), evaporative water loss (EWL) and respiratory quotient (RQ), in a sample of ca. 20 individuals. Our results suggest that D. gliroides exhibits poor control of body temperature (T(b)), with a thermal amplitude of ca. 10 degrees C in normothermia. As a consequence, repeatability of T(b) and metabolic rate (either as V(CO(2)) or V(O(2))) were relatively low (tau(T)(b)=0.25+/-0.04, tau(VCO2)=0.14+/-0.03, tau(V)(O2)=0.24+/-0.02, jackknife estimations of standard errors). Thermal conductance exhibited near-zero or negative repeatability and was lower than expected for marsupials. However, we found significant repeatability for RQ and EWL (tau=0.32+/-0.03 and 0.49+/-0.09, respectively). In general, these results suggest that Monito del Monte exhibits some ;reptilian' physiological characteristics. The relatively low repeatability of physiological variables, which otherwise exhibit large inter-individual and genetic variance in eutherian mammals, suggests that these capacities do not exhibit evolutionary potential in the ancient order Microbiotheria.


Assuntos
Variação Genética , Marsupiais/genética , Marsupiais/metabolismo , Animais , Temperatura Corporal , Metabolismo Energético , Consumo de Oxigênio , Condutividade Térmica
9.
Peptides ; 11(3): 521-5, 1990.
Artigo em Inglês | MEDLINE | ID: mdl-2199949

RESUMO

Two molecular forms of gonadotropin-releasing hormone (GnRH) were demonstrated in hypothalamic extracts of M. domestica using high performance liquid chromatography and radioimmunoassay with specific GnRH antisera. One form eluted in the same position as synthetic mammalian GnRH and was quantified equally by two mammalian GnRH antisera, while the second form coeluted with synthetic chicken GnRH II and was quantified equally with two chicken GnRH II antisera. The finding of chicken GnRH II in a South American species of marsupial, which has previously been reported in some Australian species of marsupial and in species of Aves, Reptilia, Amphibia, Osteichthyes and Chondrichthyes, supports our hypothesis that this widespread structural variant may represent an early evolved and conserved form of GnRH.


Assuntos
Hormônio Liberador de Gonadotropina/análogos & derivados , Marsupiais/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/análise , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Hormônio Liberador de Gonadotropina/análise , Hipotálamo/análise , Mamíferos , Dados de Sequência Molecular , Radioimunoensaio , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA